Assessments of preprocessing methods for Landsat time series images of mountainous forests in the tropics

Katsuto Shimizu, Tetsuji Ota, Nobuya Mizoue, Shigejiro Yoshida

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Monitoring forest changes based on numerous satellite images has been recently conducted in the tropics. Preparation of a time series of satellite images, sometimes referred to as preprocessing, is essential for conducting robust detection of forest change. To create consistent and stable conditions in satellite images, the best methods have to be used in each step to correct various sources of noise. This study assessed three atmospheric correction methods, six topographic correction methods, and eight gap-filling methods to produce the best possible time series of Landsat images of tropical seasonal forests. The results showed that the best methods for atmospheric and topographic correction were relative corrections using a Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), which is based on a 6S radiative transfer model, and the C-correction, respectively. Weighted linear regression and multiple linear regression models were selected as the best models for the filling of data gaps associated with Scan Line Corrector-off and clouds, respectively. This study provided the best possible image preprocessing for trajectory-based change detection using annual Landsat images. Although the best possible preprocessing methods might vary depending on the change detection methods used in different study areas, the results highlight the preferable preprocessing methods, even for different types of time series analysis.

Original languageEnglish
Pages (from-to)139-148
Number of pages10
JournalJournal of Forest Research
Volume23
Issue number3
DOIs
Publication statusPublished - May 4 2018

All Science Journal Classification (ASJC) codes

  • Forestry

Fingerprint

Dive into the research topics of 'Assessments of preprocessing methods for Landsat time series images of mountainous forests in the tropics'. Together they form a unique fingerprint.

Cite this