Association of ocular inflammation and innate immune response

Research output: Contribution to journalReview article

1 Citation (Scopus)

Abstract

Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and micro bubbles into the vitreous cavity following low power ultrasound treatment through the cornea.

Original languageEnglish
JournalNippon Ganka Gakkai zasshi
Volume112
Issue number3
Publication statusPublished - Jan 1 2008

Fingerprint

Choroidal Neovascularization
Innate Immunity
Natural Killer T-Cells
Inflammation
Knockout Mice
Uveitis
Adaptive Immunity
Lasers
Galactosylceramides
Cytokines
Th17 Cells
Choroid
Interleukin-17
Microspheres
Cornea
Vascular Endothelial Growth Factor A
Cicatrix
Retina
Interleukin-6
Theoretical Models

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Cite this

Association of ocular inflammation and innate immune response. / Sonoda, Kohei.

In: Nippon Ganka Gakkai zasshi, Vol. 112, No. 3, 01.01.2008.

Research output: Contribution to journalReview article

@article{7de5367ecbed4a47b2908a88c88d3b32,
title = "Association of ocular inflammation and innate immune response",
abstract = "Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and micro bubbles into the vitreous cavity following low power ultrasound treatment through the cornea.",
author = "Kohei Sonoda",
year = "2008",
month = "1",
day = "1",
language = "English",
volume = "112",
journal = "Journal of Japanese Ophthalmological Society",
issn = "0029-0203",
publisher = "Nippon Ganka Gakkai",
number = "3",

}

TY - JOUR

T1 - Association of ocular inflammation and innate immune response

AU - Sonoda, Kohei

PY - 2008/1/1

Y1 - 2008/1/1

N2 - Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and micro bubbles into the vitreous cavity following low power ultrasound treatment through the cornea.

AB - Immune response has been divided into innate immunity and acquired immunity. We focused on the role of innate immunity during the formation of uveitis and choroidal neovascularization (CNV)-related diseases. To carry out a comprehensive analysis of ocular inflammatory responses in patients with uveitis, vitreous fluid was analyzed using a microbead-based multiplex ELIZA system. We found that cytokines which were related with innate immunity were elevated, but cytokines which were related with acquired immunity were not. We also found that the role of IL-17 was to produce Th17 cells in the chronic phase of experimental uveitis. Next, we investigated the role of the natural killer (NK) T cells which restrict CD1 and participate in the innate immune response in laser-induced experimental CNV. We studied the CNV formation in two independent NK T cell-deficient strains of mice, CD1 knockout (KO) mice and Jalpha18 KO mice, and found that both KO mice showed significant reduction of the effects of experimental CNV. After laser treatment, both CD1 KO mice and Jalpha18 KO mice showed a decrease in the expression of vascular endothelial growth factor (VEGF) expression in retina and choroid. Interestingly, intravitreous inoculation of a galactosylceramide (alphaGalCer), which is the ligand of NK Tcells, inhibited CNV in C57BL6 mice. Collectively, we conclude that NK T cells play an important role in forming CNV as one of the inducers of VEGS. Because NK T cells bear the potential to regulate immune response, alphaGalCer might activate NK T cells differently to produce angiostatic factors and have a therapeutic potential in vivo. During the clinical process of CNV-related diseases, not only CNV formation, but also subretinal scarring is thought to be another important step. We thus established the experimental model of subretinal scaring by injecting peritoneal exudating macrophases into the subretinal space. This scaring was inhibited by inoculation of anti-IL-6 antibody and micro bubbles into the vitreous cavity following low power ultrasound treatment through the cornea.

UR - http://www.scopus.com/inward/record.url?scp=45549096344&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=45549096344&partnerID=8YFLogxK

M3 - Review article

C2 - 18411715

AN - SCOPUS:45549096344

VL - 112

JO - Journal of Japanese Ophthalmological Society

JF - Journal of Japanese Ophthalmological Society

SN - 0029-0203

IS - 3

ER -