TY - JOUR
T1 - Asymptotics of the Bergman function for semipositive holomorphic line bundles
AU - Cho, Koji
AU - Kamimoto, Joe
AU - Nose, Toshihiro
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011/11/12
Y1 - 2011/11/12
N2 - In this paper, an asymptotic expansion of the Bergman function at a degenerate point is given for high powers of semipositive holomorphic line bundles on compact K̈ahler manifolds, whose Hermitian metrics have some kind of quasihomogeneous properties. In the sense of pointwise asymptotics, this expansion is a generalization of the expansion of Tian- Zelditch-Catlin-Lu in the positive line bundle case.
AB - In this paper, an asymptotic expansion of the Bergman function at a degenerate point is given for high powers of semipositive holomorphic line bundles on compact K̈ahler manifolds, whose Hermitian metrics have some kind of quasihomogeneous properties. In the sense of pointwise asymptotics, this expansion is a generalization of the expansion of Tian- Zelditch-Catlin-Lu in the positive line bundle case.
UR - http://www.scopus.com/inward/record.url?scp=82355161246&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=82355161246&partnerID=8YFLogxK
U2 - 10.2206/kyushujm.65.349
DO - 10.2206/kyushujm.65.349
M3 - Article
AN - SCOPUS:82355161246
VL - 65
SP - 349
EP - 382
JO - Kyushu Journal of Mathematics
JF - Kyushu Journal of Mathematics
SN - 1340-6116
IS - 2
ER -