Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC (0001)

T. Shirasawa, K. Hayashi, H. Yoshida, S. Mizuno, S. Tanaka, T. Muro, Y. Tamenori, Y. Harada, T. Tokushima, Y. Horikawa, E. Kobayashi, T. Kinoshita, S. Shin, T. Takahashi, Y. Ando, K. Akagi, S. Tsuneyuki, H. Tochihara

    Research output: Contribution to journalArticle

    16 Citations (Scopus)

    Abstract

    Electronic structures of a silicon-oxynitride (SiON) layer (∼0.6 nm in thickness) epitaxially grown on 6H-SiC (0001) were investigated on atomic-layer scale using soft x-ray absorption spectroscopy and x-ray emission spectroscopy (XAS and XES) and first-principles calculations. The SiON layer has a hetero-double-layered structure: an interfacial silicon nitride layer and a silicon oxide overlayer. The element-specific XAS and XES measurements revealed layer-resolved energy-band profiles. Measured gap sizes are 6.3±0.6 eV at the nitride layer and 8.3±0.8 eV at the oxide layer. The nitride and oxide layers have almost the same energy of conduction-band minimum (CBM) being ∼3 eV higher than CBM of the SiC substrate. The energy-band profiles of the SiON layer are qualitatively reproduced by the calculations. The calculations show that broadening of bandgap of the substrate occurs only at an interfacial SiC bilayer.

    Original languageEnglish
    Article number241301
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Volume79
    Issue number24
    DOIs
    Publication statusPublished - Jun 1 2009

    Fingerprint

    oxynitrides
    Silicon
    silicon films
    Energy gap
    X rays
    Emission spectroscopy
    Conduction bands
    Absorption spectroscopy
    Nitrides
    Band structure
    Oxides
    Silicon oxides
    Substrates
    Silicon nitride
    Electronic structure
    x ray absorption
    x ray spectroscopy
    nitrides
    energy bands
    absorption spectroscopy

    All Science Journal Classification (ASJC) codes

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics

    Cite this

    Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC (0001). / Shirasawa, T.; Hayashi, K.; Yoshida, H.; Mizuno, S.; Tanaka, S.; Muro, T.; Tamenori, Y.; Harada, Y.; Tokushima, T.; Horikawa, Y.; Kobayashi, E.; Kinoshita, T.; Shin, S.; Takahashi, T.; Ando, Y.; Akagi, K.; Tsuneyuki, S.; Tochihara, H.

    In: Physical Review B - Condensed Matter and Materials Physics, Vol. 79, No. 24, 241301, 01.06.2009.

    Research output: Contribution to journalArticle

    Shirasawa, T, Hayashi, K, Yoshida, H, Mizuno, S, Tanaka, S, Muro, T, Tamenori, Y, Harada, Y, Tokushima, T, Horikawa, Y, Kobayashi, E, Kinoshita, T, Shin, S, Takahashi, T, Ando, Y, Akagi, K, Tsuneyuki, S & Tochihara, H 2009, 'Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC (0001)', Physical Review B - Condensed Matter and Materials Physics, vol. 79, no. 24, 241301. https://doi.org/10.1103/PhysRevB.79.241301
    Shirasawa, T. ; Hayashi, K. ; Yoshida, H. ; Mizuno, S. ; Tanaka, S. ; Muro, T. ; Tamenori, Y. ; Harada, Y. ; Tokushima, T. ; Horikawa, Y. ; Kobayashi, E. ; Kinoshita, T. ; Shin, S. ; Takahashi, T. ; Ando, Y. ; Akagi, K. ; Tsuneyuki, S. ; Tochihara, H. / Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC (0001). In: Physical Review B - Condensed Matter and Materials Physics. 2009 ; Vol. 79, No. 24.
    @article{2814aff4544f46948d3ee3c0c240dd87,
    title = "Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC (0001)",
    abstract = "Electronic structures of a silicon-oxynitride (SiON) layer (∼0.6 nm in thickness) epitaxially grown on 6H-SiC (0001) were investigated on atomic-layer scale using soft x-ray absorption spectroscopy and x-ray emission spectroscopy (XAS and XES) and first-principles calculations. The SiON layer has a hetero-double-layered structure: an interfacial silicon nitride layer and a silicon oxide overlayer. The element-specific XAS and XES measurements revealed layer-resolved energy-band profiles. Measured gap sizes are 6.3±0.6 eV at the nitride layer and 8.3±0.8 eV at the oxide layer. The nitride and oxide layers have almost the same energy of conduction-band minimum (CBM) being ∼3 eV higher than CBM of the SiC substrate. The energy-band profiles of the SiON layer are qualitatively reproduced by the calculations. The calculations show that broadening of bandgap of the substrate occurs only at an interfacial SiC bilayer.",
    author = "T. Shirasawa and K. Hayashi and H. Yoshida and S. Mizuno and S. Tanaka and T. Muro and Y. Tamenori and Y. Harada and T. Tokushima and Y. Horikawa and E. Kobayashi and T. Kinoshita and S. Shin and T. Takahashi and Y. Ando and K. Akagi and S. Tsuneyuki and H. Tochihara",
    year = "2009",
    month = "6",
    day = "1",
    doi = "10.1103/PhysRevB.79.241301",
    language = "English",
    volume = "79",
    journal = "Physical Review B - Condensed Matter and Materials Physics",
    issn = "1098-0121",
    publisher = "American Physical Society",
    number = "24",

    }

    TY - JOUR

    T1 - Atomic-layer-resolved bandgap structure of an ultrathin oxynitride-silicon film epitaxially grown on 6H-SiC (0001)

    AU - Shirasawa, T.

    AU - Hayashi, K.

    AU - Yoshida, H.

    AU - Mizuno, S.

    AU - Tanaka, S.

    AU - Muro, T.

    AU - Tamenori, Y.

    AU - Harada, Y.

    AU - Tokushima, T.

    AU - Horikawa, Y.

    AU - Kobayashi, E.

    AU - Kinoshita, T.

    AU - Shin, S.

    AU - Takahashi, T.

    AU - Ando, Y.

    AU - Akagi, K.

    AU - Tsuneyuki, S.

    AU - Tochihara, H.

    PY - 2009/6/1

    Y1 - 2009/6/1

    N2 - Electronic structures of a silicon-oxynitride (SiON) layer (∼0.6 nm in thickness) epitaxially grown on 6H-SiC (0001) were investigated on atomic-layer scale using soft x-ray absorption spectroscopy and x-ray emission spectroscopy (XAS and XES) and first-principles calculations. The SiON layer has a hetero-double-layered structure: an interfacial silicon nitride layer and a silicon oxide overlayer. The element-specific XAS and XES measurements revealed layer-resolved energy-band profiles. Measured gap sizes are 6.3±0.6 eV at the nitride layer and 8.3±0.8 eV at the oxide layer. The nitride and oxide layers have almost the same energy of conduction-band minimum (CBM) being ∼3 eV higher than CBM of the SiC substrate. The energy-band profiles of the SiON layer are qualitatively reproduced by the calculations. The calculations show that broadening of bandgap of the substrate occurs only at an interfacial SiC bilayer.

    AB - Electronic structures of a silicon-oxynitride (SiON) layer (∼0.6 nm in thickness) epitaxially grown on 6H-SiC (0001) were investigated on atomic-layer scale using soft x-ray absorption spectroscopy and x-ray emission spectroscopy (XAS and XES) and first-principles calculations. The SiON layer has a hetero-double-layered structure: an interfacial silicon nitride layer and a silicon oxide overlayer. The element-specific XAS and XES measurements revealed layer-resolved energy-band profiles. Measured gap sizes are 6.3±0.6 eV at the nitride layer and 8.3±0.8 eV at the oxide layer. The nitride and oxide layers have almost the same energy of conduction-band minimum (CBM) being ∼3 eV higher than CBM of the SiC substrate. The energy-band profiles of the SiON layer are qualitatively reproduced by the calculations. The calculations show that broadening of bandgap of the substrate occurs only at an interfacial SiC bilayer.

    UR - http://www.scopus.com/inward/record.url?scp=67649946029&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=67649946029&partnerID=8YFLogxK

    U2 - 10.1103/PhysRevB.79.241301

    DO - 10.1103/PhysRevB.79.241301

    M3 - Article

    AN - SCOPUS:67649946029

    VL - 79

    JO - Physical Review B - Condensed Matter and Materials Physics

    JF - Physical Review B - Condensed Matter and Materials Physics

    SN - 1098-0121

    IS - 24

    M1 - 241301

    ER -