Atomic locations of minor dopants and their roles in the stabilization of η- C u6 S n5

Wenhui Yang, Xuan Quy Tran, Tomokazu Yamamoto, Satoru Yoshioka, Flora Somidin, Kazuhiro Nogita, Syo Matsumura

Research output: Contribution to journalArticle

Abstract

Chemical modification using only small amounts of elements such as Zn, In, Sb, or Ni has proven to be an effective means to control the desirable crystal structure of hexagonal η-Cu6Sn5 over a wide thermally operating window, typically found in Pb-free Sn-based soldering or Li-ion battery anode applications. Though appealing, the underlying mechanisms on the role of these dopants remain incomplete and their atomic arrangements within the η-Cu6Sn5 lattices have not yet been experimentally determined. In the current study, we directly reveal the atomic positions of Zn, In, and Sb at the Sn sites of η-Cu6Sn5 via atomic-scale x-ray energy dispersive spectroscopy (XEDS) maps utilizing advanced Cs-corrected scanning transmission electron microscopy. The use of advanced statistical algorithms including Poisson non-local principal component analysis and lattice averaging enables the fine resolution of weak XEDS maps from trace dopant elements. Our first-principles calculations further identify the influence of dopants at these atomic sites on the overall energetics, electronic structures, as well as local bonding environments, leading to the most favorable situations for η-Cu6Sn5 stabilization.

Original languageEnglish
Article number065002
JournalPhysical Review Materials
Volume4
Issue number6
DOIs
Publication statusPublished - Jun 2020

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Physics and Astronomy (miscellaneous)

Fingerprint Dive into the research topics of 'Atomic locations of minor dopants and their roles in the stabilization of η- C u6 S n5'. Together they form a unique fingerprint.

  • Cite this