Axial coordination changes the morphology of porphyrin assemblies in an organogel system

Takanori Kishida, Norifumi Fujita, Osamu Hirata, Seiji Shinkai

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

The gelation properties of a zinc porphyrin bearing peripheral urea groups (1·Zn) were evaluated in the absence and the presence of several diamines. In aromatic solvents such as benzene, toluene and p-xylene, 1·Zn only provided the precipitate. In contrast, 1·Zn with 0.5 and 1.0 equiv. of piperazine formed gels, and the gel with 0.5 equiv. of piperazine showed a unique physical property called 'thixotropy'. On the other hand, upon addition of similar diamines such as DABCO, ethylenediamine and N,N′-dimethylethylenediamine, 1·Zn did not gelate these solvents. When the critical gelation concentration was plotted against the ratio of piperazine versus 1·Zn, it afforded a minimum breakpoint at 0.5 equiv. and the critical concentration increased with further increase in the fraction of piperazine, indicating that the stable gel is formed from the 1·Zn + piperazine 2: 1 complex and the subsequent transformation to the 1: 1 complex rather destabilizes the gel. Very interestingly, it was clearly shown by SEM and TEM observations that such structural changes of the unit complex induced by the ratio of piperazine versus 1·Zn can lead to gradual morphological transitions: that is, spherical structure at 0 equiv., 1-D fibrous structure at 0.5 equiv. and 2-D sheet-like structure at 1.0 equiv. In addition, UV-VIS spectra revealed that 1·Zn itself adopts a J-aggregation mode, whereas 1·Zn + piperazine 2: 1 and 1: 1 complexes adopt an H-like aggregation mode. On the other hand, upon addition of 0.5 equiv. of other diamines, 1·Zn + diamine complexes result in different morphologies other than the 1-D fibrous structure. To explore a reasonable rationale for these results, we conducted computational studies. As a result, we found that the complex symmetry of the unit complex plays an important role in determining the final ordered structure.

Original languageEnglish
Pages (from-to)1902-1909
Number of pages8
JournalOrganic and Biomolecular Chemistry
Volume4
Issue number10
DOIs
Publication statusPublished - May 25 2006

Fingerprint

Porphyrins
diamines
porphyrins
assemblies
gels
Diamines
gelation
Gels
thixotropy
ethylenediamine
Gelation
xylene
ureas
Bearings (structural)
Agglomeration
toluene
precipitates
zinc
physical properties
benzene

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Physical and Theoretical Chemistry
  • Organic Chemistry

Cite this

Axial coordination changes the morphology of porphyrin assemblies in an organogel system. / Kishida, Takanori; Fujita, Norifumi; Hirata, Osamu; Shinkai, Seiji.

In: Organic and Biomolecular Chemistry, Vol. 4, No. 10, 25.05.2006, p. 1902-1909.

Research output: Contribution to journalArticle

Kishida, Takanori ; Fujita, Norifumi ; Hirata, Osamu ; Shinkai, Seiji. / Axial coordination changes the morphology of porphyrin assemblies in an organogel system. In: Organic and Biomolecular Chemistry. 2006 ; Vol. 4, No. 10. pp. 1902-1909.
@article{b2bd81e5187948408b7806439d628942,
title = "Axial coordination changes the morphology of porphyrin assemblies in an organogel system",
abstract = "The gelation properties of a zinc porphyrin bearing peripheral urea groups (1·Zn) were evaluated in the absence and the presence of several diamines. In aromatic solvents such as benzene, toluene and p-xylene, 1·Zn only provided the precipitate. In contrast, 1·Zn with 0.5 and 1.0 equiv. of piperazine formed gels, and the gel with 0.5 equiv. of piperazine showed a unique physical property called 'thixotropy'. On the other hand, upon addition of similar diamines such as DABCO, ethylenediamine and N,N′-dimethylethylenediamine, 1·Zn did not gelate these solvents. When the critical gelation concentration was plotted against the ratio of piperazine versus 1·Zn, it afforded a minimum breakpoint at 0.5 equiv. and the critical concentration increased with further increase in the fraction of piperazine, indicating that the stable gel is formed from the 1·Zn + piperazine 2: 1 complex and the subsequent transformation to the 1: 1 complex rather destabilizes the gel. Very interestingly, it was clearly shown by SEM and TEM observations that such structural changes of the unit complex induced by the ratio of piperazine versus 1·Zn can lead to gradual morphological transitions: that is, spherical structure at 0 equiv., 1-D fibrous structure at 0.5 equiv. and 2-D sheet-like structure at 1.0 equiv. In addition, UV-VIS spectra revealed that 1·Zn itself adopts a J-aggregation mode, whereas 1·Zn + piperazine 2: 1 and 1: 1 complexes adopt an H-like aggregation mode. On the other hand, upon addition of 0.5 equiv. of other diamines, 1·Zn + diamine complexes result in different morphologies other than the 1-D fibrous structure. To explore a reasonable rationale for these results, we conducted computational studies. As a result, we found that the complex symmetry of the unit complex plays an important role in determining the final ordered structure.",
author = "Takanori Kishida and Norifumi Fujita and Osamu Hirata and Seiji Shinkai",
year = "2006",
month = "5",
day = "25",
doi = "10.1039/b602025a",
language = "English",
volume = "4",
pages = "1902--1909",
journal = "Organic and Biomolecular Chemistry",
issn = "1477-0520",
publisher = "Royal Society of Chemistry",
number = "10",

}

TY - JOUR

T1 - Axial coordination changes the morphology of porphyrin assemblies in an organogel system

AU - Kishida, Takanori

AU - Fujita, Norifumi

AU - Hirata, Osamu

AU - Shinkai, Seiji

PY - 2006/5/25

Y1 - 2006/5/25

N2 - The gelation properties of a zinc porphyrin bearing peripheral urea groups (1·Zn) were evaluated in the absence and the presence of several diamines. In aromatic solvents such as benzene, toluene and p-xylene, 1·Zn only provided the precipitate. In contrast, 1·Zn with 0.5 and 1.0 equiv. of piperazine formed gels, and the gel with 0.5 equiv. of piperazine showed a unique physical property called 'thixotropy'. On the other hand, upon addition of similar diamines such as DABCO, ethylenediamine and N,N′-dimethylethylenediamine, 1·Zn did not gelate these solvents. When the critical gelation concentration was plotted against the ratio of piperazine versus 1·Zn, it afforded a minimum breakpoint at 0.5 equiv. and the critical concentration increased with further increase in the fraction of piperazine, indicating that the stable gel is formed from the 1·Zn + piperazine 2: 1 complex and the subsequent transformation to the 1: 1 complex rather destabilizes the gel. Very interestingly, it was clearly shown by SEM and TEM observations that such structural changes of the unit complex induced by the ratio of piperazine versus 1·Zn can lead to gradual morphological transitions: that is, spherical structure at 0 equiv., 1-D fibrous structure at 0.5 equiv. and 2-D sheet-like structure at 1.0 equiv. In addition, UV-VIS spectra revealed that 1·Zn itself adopts a J-aggregation mode, whereas 1·Zn + piperazine 2: 1 and 1: 1 complexes adopt an H-like aggregation mode. On the other hand, upon addition of 0.5 equiv. of other diamines, 1·Zn + diamine complexes result in different morphologies other than the 1-D fibrous structure. To explore a reasonable rationale for these results, we conducted computational studies. As a result, we found that the complex symmetry of the unit complex plays an important role in determining the final ordered structure.

AB - The gelation properties of a zinc porphyrin bearing peripheral urea groups (1·Zn) were evaluated in the absence and the presence of several diamines. In aromatic solvents such as benzene, toluene and p-xylene, 1·Zn only provided the precipitate. In contrast, 1·Zn with 0.5 and 1.0 equiv. of piperazine formed gels, and the gel with 0.5 equiv. of piperazine showed a unique physical property called 'thixotropy'. On the other hand, upon addition of similar diamines such as DABCO, ethylenediamine and N,N′-dimethylethylenediamine, 1·Zn did not gelate these solvents. When the critical gelation concentration was plotted against the ratio of piperazine versus 1·Zn, it afforded a minimum breakpoint at 0.5 equiv. and the critical concentration increased with further increase in the fraction of piperazine, indicating that the stable gel is formed from the 1·Zn + piperazine 2: 1 complex and the subsequent transformation to the 1: 1 complex rather destabilizes the gel. Very interestingly, it was clearly shown by SEM and TEM observations that such structural changes of the unit complex induced by the ratio of piperazine versus 1·Zn can lead to gradual morphological transitions: that is, spherical structure at 0 equiv., 1-D fibrous structure at 0.5 equiv. and 2-D sheet-like structure at 1.0 equiv. In addition, UV-VIS spectra revealed that 1·Zn itself adopts a J-aggregation mode, whereas 1·Zn + piperazine 2: 1 and 1: 1 complexes adopt an H-like aggregation mode. On the other hand, upon addition of 0.5 equiv. of other diamines, 1·Zn + diamine complexes result in different morphologies other than the 1-D fibrous structure. To explore a reasonable rationale for these results, we conducted computational studies. As a result, we found that the complex symmetry of the unit complex plays an important role in determining the final ordered structure.

UR - http://www.scopus.com/inward/record.url?scp=33646736345&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33646736345&partnerID=8YFLogxK

U2 - 10.1039/b602025a

DO - 10.1039/b602025a

M3 - Article

VL - 4

SP - 1902

EP - 1909

JO - Organic and Biomolecular Chemistry

JF - Organic and Biomolecular Chemistry

SN - 1477-0520

IS - 10

ER -