Background modeling based on bidirectional analysis

Research output: Contribution to journalConference articlepeer-review

29 Citations (Scopus)


Background modeling and subtraction is an essential task in video surveillance applications. Most traditional studies use information observed in past frames to create and update a background model. To adapt to background changes, the background model has been enhanced by introducing various forms of information including spatial consistency and temporal tendency. In this paper, we propose a new framework that leverages information from a future period. Our proposed approach realizes a low-cost and highly accurate background model. The proposed framework is called bidirectional background modeling, and performs background subtraction based on bidirectional analysis, i.e., analysis from past to present and analysis from future to present. Although a result will be output with some delay because information is taken from a future period, our proposed approach improves the accuracy by about 30% if only a 33-millisecond of delay is acceptable. Furthermore, the memory cost can be reduced by about 65% relative to typical background modeling.

Original languageEnglish
Article number6619102
Pages (from-to)1979-1986
Number of pages8
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Publication statusPublished - 2013
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013 - Portland, OR, United States
Duration: Jun 23 2013Jun 28 2013

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Background modeling based on bidirectional analysis'. Together they form a unique fingerprint.

Cite this