Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

K. Kawagoe, Y. Miura, I. Sekiya, T. Suehara, T. Yoshioka, S. Bilokin, J. Bonis, P. Cornebise, A. Gallas, A. Irles, R. Pöschl, F. Richard, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, V. Boudry, J. C. Brient, E. Edy, G. FayolleM. Frotin, F. Gastaldi, R. Guillaumat, A. Lobanov, M. Louzir, F. Magniette, J. Nanni, M. Rubio-Roy, K. Shpak, H. Videau, D. Yu, S. Callier, F. Dulucq, Ch de la Taille, N. Seguin-Moreau, J. E. Augustin, R. Cornat, J. David, P. Ghislain, D. Lacour, L. Lavergne, J. M. Parraud, J. S. Chai, D. Jeans

Research output: Contribution to journalArticle

Abstract

The technological prototype of the CALICE highly granular silicon–tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 5.5×5.5 mm2 silicon PIN diodes. The four sensors covered a total area of 18 × 18 cm and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.

Fingerprint

performance tests
prototypes
sensors
Sensors
Detectors
Silicon sensors
Calorimeters
Tungsten
detectors
Diodes
silicon
calorimeters
readout
Silicon
tungsten
Electrons
actuators
diodes
electromagnetism
output

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Instrumentation

Cite this

Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC. / Kawagoe, K.; Miura, Y.; Sekiya, I.; Suehara, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Gallas, A.; Irles, A.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J. C.; Edy, E.; Fayolle, G.; Frotin, M.; Gastaldi, F.; Guillaumat, R.; Lobanov, A.; Louzir, M.; Magniette, F.; Nanni, J.; Rubio-Roy, M.; Shpak, K.; Videau, H.; Yu, D.; Callier, S.; Dulucq, F.; de la Taille, Ch; Seguin-Moreau, N.; Augustin, J. E.; Cornat, R.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Parraud, J. M.; Chai, J. S.; Jeans, D.

In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 950, 162969, 11.01.2020.

Research output: Contribution to journalArticle

Kawagoe, K, Miura, Y, Sekiya, I, Suehara, T, Yoshioka, T, Bilokin, S, Bonis, J, Cornebise, P, Gallas, A, Irles, A, Pöschl, R, Richard, F, Thiebault, A, Zerwas, D, Anduze, M, Balagura, V, Boudry, V, Brient, JC, Edy, E, Fayolle, G, Frotin, M, Gastaldi, F, Guillaumat, R, Lobanov, A, Louzir, M, Magniette, F, Nanni, J, Rubio-Roy, M, Shpak, K, Videau, H, Yu, D, Callier, S, Dulucq, F, de la Taille, C, Seguin-Moreau, N, Augustin, JE, Cornat, R, David, J, Ghislain, P, Lacour, D, Lavergne, L, Parraud, JM, Chai, JS & Jeans, D 2020, 'Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC', Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 950, 162969. https://doi.org/10.1016/j.nima.2019.162969
Kawagoe, K. ; Miura, Y. ; Sekiya, I. ; Suehara, T. ; Yoshioka, T. ; Bilokin, S. ; Bonis, J. ; Cornebise, P. ; Gallas, A. ; Irles, A. ; Pöschl, R. ; Richard, F. ; Thiebault, A. ; Zerwas, D. ; Anduze, M. ; Balagura, V. ; Boudry, V. ; Brient, J. C. ; Edy, E. ; Fayolle, G. ; Frotin, M. ; Gastaldi, F. ; Guillaumat, R. ; Lobanov, A. ; Louzir, M. ; Magniette, F. ; Nanni, J. ; Rubio-Roy, M. ; Shpak, K. ; Videau, H. ; Yu, D. ; Callier, S. ; Dulucq, F. ; de la Taille, Ch ; Seguin-Moreau, N. ; Augustin, J. E. ; Cornat, R. ; David, J. ; Ghislain, P. ; Lacour, D. ; Lavergne, L. ; Parraud, J. M. ; Chai, J. S. ; Jeans, D. / Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC. In: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2020 ; Vol. 950.
@article{eb592c2d62f645f9b6be66e240593b6e,
title = "Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC",
abstract = "The technological prototype of the CALICE highly granular silicon–tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 5.5×5.5 mm2 silicon PIN diodes. The four sensors covered a total area of 18 × 18 cm and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.",
author = "K. Kawagoe and Y. Miura and I. Sekiya and T. Suehara and T. Yoshioka and S. Bilokin and J. Bonis and P. Cornebise and A. Gallas and A. Irles and R. P{\"o}schl and F. Richard and A. Thiebault and D. Zerwas and M. Anduze and V. Balagura and V. Boudry and Brient, {J. C.} and E. Edy and G. Fayolle and M. Frotin and F. Gastaldi and R. Guillaumat and A. Lobanov and M. Louzir and F. Magniette and J. Nanni and M. Rubio-Roy and K. Shpak and H. Videau and D. Yu and S. Callier and F. Dulucq and {de la Taille}, Ch and N. Seguin-Moreau and Augustin, {J. E.} and R. Cornat and J. David and P. Ghislain and D. Lacour and L. Lavergne and Parraud, {J. M.} and Chai, {J. S.} and D. Jeans",
year = "2020",
month = "1",
day = "11",
doi = "10.1016/j.nima.2019.162969",
language = "English",
volume = "950",
journal = "Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment",
issn = "0168-9002",
publisher = "Elsevier",

}

TY - JOUR

T1 - Beam test performance of the highly granular SiW-ECAL technological prototype for the ILC

AU - Kawagoe, K.

AU - Miura, Y.

AU - Sekiya, I.

AU - Suehara, T.

AU - Yoshioka, T.

AU - Bilokin, S.

AU - Bonis, J.

AU - Cornebise, P.

AU - Gallas, A.

AU - Irles, A.

AU - Pöschl, R.

AU - Richard, F.

AU - Thiebault, A.

AU - Zerwas, D.

AU - Anduze, M.

AU - Balagura, V.

AU - Boudry, V.

AU - Brient, J. C.

AU - Edy, E.

AU - Fayolle, G.

AU - Frotin, M.

AU - Gastaldi, F.

AU - Guillaumat, R.

AU - Lobanov, A.

AU - Louzir, M.

AU - Magniette, F.

AU - Nanni, J.

AU - Rubio-Roy, M.

AU - Shpak, K.

AU - Videau, H.

AU - Yu, D.

AU - Callier, S.

AU - Dulucq, F.

AU - de la Taille, Ch

AU - Seguin-Moreau, N.

AU - Augustin, J. E.

AU - Cornat, R.

AU - David, J.

AU - Ghislain, P.

AU - Lacour, D.

AU - Lavergne, L.

AU - Parraud, J. M.

AU - Chai, J. S.

AU - Jeans, D.

PY - 2020/1/11

Y1 - 2020/1/11

N2 - The technological prototype of the CALICE highly granular silicon–tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 5.5×5.5 mm2 silicon PIN diodes. The four sensors covered a total area of 18 × 18 cm and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.

AB - The technological prototype of the CALICE highly granular silicon–tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 5.5×5.5 mm2 silicon PIN diodes. The four sensors covered a total area of 18 × 18 cm and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.

UR - http://www.scopus.com/inward/record.url?scp=85073538556&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85073538556&partnerID=8YFLogxK

U2 - 10.1016/j.nima.2019.162969

DO - 10.1016/j.nima.2019.162969

M3 - Article

AN - SCOPUS:85073538556

VL - 950

JO - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

JF - Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

SN - 0168-9002

M1 - 162969

ER -