Behavioral and neurochemical characterization of mice deficient in the N-type Ca 2+ channel α 1B subunit

Osamu Nakagawasai, Hiroshi Onogi, Satoru Mitazaki, Atsushi Sato, Kenya Watanabe, Hiroko Saito, Shigeo Murai, Kota Nakaya, Manabu Murakami, Eiki Takahashi, Koichi Tan-No, Takeshi Tadano

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

N-type voltage-dependent calcium channels (VDCCs) play an important role in neurotransmission, synaptic plasticity, and brain development. They are composed of several subunits named α 1, α 2, δ, β and γ. The α 1 subunit is essential for channel functions and determines fundamental channel properties. Since N-type VDCC are critically involved in the release of neurotransmitters and clinical relevance, we predicted that α 1 subunit KO mice would show several alterations in behavior. In the present study, we investigated neuronal functions in mice lacking the α 1B (Ca V2.2) subunit of the N-type calcium channels. Ca V2.2 -/- mice exhibited a significant increase in locomotion on an activity wheel during the dark phase. Furthermore, when challenged with apomorphine, mutant mice showed enhanced locomotor activity. Cognitive functions were examined using a Y-maze task for short-term memory and a passive avoidance task for long-term memory. The Y-maze revealed no differences in spontaneous alternation behavior between mutant and wild-type mice. The passive avoidance test revealed that the latency time in mutant mice was significantly decreased. The mutant mice showed prepulse inhibition deficits reminiscent of the sensorimotor gating deficits observed in a large majority of schizophrenic patients. Decreases in baseline levels of dopamine and serotonin within the striata and frontal cortices of mutant mice were also observed. These results suggest that Ca 2+ in the central nervous system modulates various neurophysiological functions, such as locomotor activity, long-term memory, and sensorimotor gating through the α 1B subunit of the N-type calcium channels.

Original languageEnglish
Pages (from-to)224-230
Number of pages7
JournalBehavioural Brain Research
Volume208
Issue number1
DOIs
Publication statusPublished - Mar 17 2010
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Behavioral and neurochemical characterization of mice deficient in the N-type Ca <sup>2+</sup> channel α <sub>1B</sub> subunit'. Together they form a unique fingerprint.

Cite this