Biomechanical analysis of implant treatment for fully edentulous maxillae with different bone quality

Takaaki Arahira, Mitsugu Todo, Yasuyuki Matsushita, Kiyoshi Koyano

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Three-dimensional maxillary bone models were constructed using the CT-images of a male and a female patient. The distribution of Young's modulus was estimated from the bone mineral density distribution. Six implants were embedded into these maxillary models and for each model, a metal prosthesis was attached to the tops of the implants. Finite element analysis of these maxilla models was then performed in order to characterize the effects of bone quality on the stress state under an equivalent loading condition. In both the models, strain energy density was concentrated especially around the right-molar implant, suggesting that bone damage and absorption might take place in this region. A modified replacement of the right-molar implant was introduced into the female model and successfully reduced the concentration of strain energy density. It is thus concluded that this kind of 3-D modeling could clinically be used to predict the optimal implant treatment for each of the patients.

Original languageEnglish
Title of host publication6th World Congress of Biomechanics, WCB 2010 - In Conjunction with 14th International Conference on Biomedical Engineering, ICBME and 5th Asia Pacific Conference on Biomechanics, APBiomech
Pages961-964
Number of pages4
DOIs
Publication statusPublished - 2010
Event6th World Congress of Biomechanics, WCB 2010 - In Conjunction with 14th International Conference on Biomedical Engineering, ICBME and 5th Asia Pacific Conference on Biomechanics, APBiomech - Singapore, Singapore
Duration: Aug 1 2010Aug 6 2010

Publication series

NameIFMBE Proceedings
Volume31 IFMBE
ISSN (Print)1680-0737

Other

Other6th World Congress of Biomechanics, WCB 2010 - In Conjunction with 14th International Conference on Biomedical Engineering, ICBME and 5th Asia Pacific Conference on Biomechanics, APBiomech
Country/TerritorySingapore
CitySingapore
Period8/1/108/6/10

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Biomechanical analysis of implant treatment for fully edentulous maxillae with different bone quality'. Together they form a unique fingerprint.

Cite this