TY - JOUR
T1 - Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord
AU - Yanagisawa, Yoshikazu
AU - Furue, Hidemasa
AU - Kawamata, Tomoyuki
AU - Uta, Daisuke
AU - Yamamoto, Jun
AU - Furuse, Shingo
AU - Katafuchi, Toshihiko
AU - Imoto, Keiji
AU - Iwamoto, Yukihide
AU - Yoshimura, Megumu
PY - 2010/7/5
Y1 - 2010/7/5
N2 - Background: Chronic bone cancer pain is thought to be partly due to central sensitization. Although murine models of bone cancer pain revealed significant neurochemical changes in the spinal cord, it is not known whether this produces functional alterations in spinal sensory synaptic transmission. In this study, we examined excitatory synaptic responses evoked in substantia gelatinosa (SG, lamina II) neurons in spinal cord slices of adult mice bearing bone cancer, using whole-cell voltage-clamp recording techniques.Results: Mice at 14 to 21 days after sarcoma implantation into the femur exhibited hyperalgesia to mechanical stimuli applied to the skin of the ipsilateral hind paw, as well as showing spontaneous and movement evoked pain-related behaviors. SG neurons exhibited spontaneous excitatory postsynaptic currents (EPSCs). The amplitudes of spontaneous EPSCs were significantly larger in cancer-bearing than control mice without any changes in passive membrane properties of SG neurons. In the presence of TTX, the amplitude of miniature EPSCs in SG neurons was increased in cancer-bearing mice and this was observed for cells sampled across a wide range of lumbar segmental levels. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor- and N-methyl-D-aspartate (NMDA) receptor-mediated EPSCs evoked by focal stimulation were also enhanced in cancer-bearing mice. Dorsal root stimulation elicited mono- and/or polysynaptic EPSCs that were caused by the activation of Aδ and/or C afferent fibers in SG neurons from both groups of animals. The number of cells receiving monosynaptic inputs from Aδ and C fibers was not different between the two groups. However, the amplitude of the monosynaptic C fiber-evoked EPSCs and the number of SG neurons receiving polysynaptic inputs from Aδ and C fibers were increased in cancer-bearing mice.Conclusions: These results show that spinal synaptic transmission mediated through Aδ and C fibers is enhanced in the SG across a wide area of lumbar levels following sarcoma implantation in the femur. This widespread spinal sensitization may be one of the underlying mechanisms for the development of chronic bone cancer pain.
AB - Background: Chronic bone cancer pain is thought to be partly due to central sensitization. Although murine models of bone cancer pain revealed significant neurochemical changes in the spinal cord, it is not known whether this produces functional alterations in spinal sensory synaptic transmission. In this study, we examined excitatory synaptic responses evoked in substantia gelatinosa (SG, lamina II) neurons in spinal cord slices of adult mice bearing bone cancer, using whole-cell voltage-clamp recording techniques.Results: Mice at 14 to 21 days after sarcoma implantation into the femur exhibited hyperalgesia to mechanical stimuli applied to the skin of the ipsilateral hind paw, as well as showing spontaneous and movement evoked pain-related behaviors. SG neurons exhibited spontaneous excitatory postsynaptic currents (EPSCs). The amplitudes of spontaneous EPSCs were significantly larger in cancer-bearing than control mice without any changes in passive membrane properties of SG neurons. In the presence of TTX, the amplitude of miniature EPSCs in SG neurons was increased in cancer-bearing mice and this was observed for cells sampled across a wide range of lumbar segmental levels. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor- and N-methyl-D-aspartate (NMDA) receptor-mediated EPSCs evoked by focal stimulation were also enhanced in cancer-bearing mice. Dorsal root stimulation elicited mono- and/or polysynaptic EPSCs that were caused by the activation of Aδ and/or C afferent fibers in SG neurons from both groups of animals. The number of cells receiving monosynaptic inputs from Aδ and C fibers was not different between the two groups. However, the amplitude of the monosynaptic C fiber-evoked EPSCs and the number of SG neurons receiving polysynaptic inputs from Aδ and C fibers were increased in cancer-bearing mice.Conclusions: These results show that spinal synaptic transmission mediated through Aδ and C fibers is enhanced in the SG across a wide area of lumbar levels following sarcoma implantation in the femur. This widespread spinal sensitization may be one of the underlying mechanisms for the development of chronic bone cancer pain.
UR - http://www.scopus.com/inward/record.url?scp=77954163522&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954163522&partnerID=8YFLogxK
U2 - 10.1186/1744-8069-6-38
DO - 10.1186/1744-8069-6-38
M3 - Article
C2 - 20602757
AN - SCOPUS:77954163522
SN - 1744-8069
VL - 6
JO - Molecular Pain
JF - Molecular Pain
M1 - 38
ER -