Abstract
Although large research efforts have been devoted to photoelectrochemical (PEC) water splitting in the past several decades, the lack of efficient, stable and Earth-abundant photoelectrodes remains a bottleneck for practical application. Here, we report a photocathode with a coaxial nanowire structure implementing a Cu2O/Ga2O3-buried p-n junction that achieves efficient light harvesting across the whole visible region to over 600 nm, reaching an external quantum yield for hydrogen generation close to 80%. With a photocurrent onset over +1 V against the reversible hydrogen electrode and a photocurrent density of ∼10 mA cm-2 at 0 V versus the reversible hydrogen electrode, our electrode constitutes the best oxide photocathode for catalytic generation of hydrogen from sunlight known today. Conformal coating via atomic-layer deposition of a TiO2 protection layer enables stable operation exceeding 100 h. Using NiMo as the hydrogen evolution catalyst, an all Earth-abundant Cu2O photocathode was achieved with stable operation in a weak alkaline electrolyte. To show the practical impact of this photocathode, we constructed an all-oxide unassisted solar water splitting tandem device using state-of-the-art BiVO4 as the photoanode, achieving ∼3% solar-to-hydrogen conversion efficiency.
Original language | English |
---|---|
Pages (from-to) | 412-420 |
Number of pages | 9 |
Journal | Nature Catalysis |
Volume | 1 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 1 2018 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Bioengineering
- Biochemistry
- Process Chemistry and Technology