Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells

Satoshi Ikegame, Makoto Takeda, Shinji Ohno, Yuichiro Nakatsu, Yoichi Nakanishi, Yusuke Yanagi

Research output: Contribution to journalArticle

81 Citations (Scopus)

Abstract

Measles virus (MV), a member of the family Paramyxoviridae, is a nonsegmented negative-strand RNA virus. The RNA helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are differentially involved in the detection of cytoplasmic viral RNAs and induction of alpha/beta interferon (IFN-α/β). RIG-I is generally believed to play a major role in the recognition of paramyxoviruses, whereas many viruses of this family produce V proteins that can inhibit MDA5. To determine the individual roles of MDA5 and RIG-I in IFN induction after MV infection, small interfering RNA-mediated knockdown of MDA5 or RIG-I was performed in the human epithelial cell line H358, which is susceptible to wild-type MV isolates. The production of IFN-β mRNA in response to MV infection was greatly reduced in RIG-I knockdown clones compared to that in H358 cells, confirming the importance of RIG-I in the detection of MV. The IFN-β mRNA levels were also moderately reduced in MDA5 knockdown clones, even though these clones retained fully functional RIG-I. A V protein-deficient recombinant MV (MVΔV) induced higher amounts of IFN-β mRNA at the early stage of infection in H358 cells compared to the parental virus. The reductions in the IFN-β mRNA levels in RIG-I knockdown clones were less pronounced after infection with MVΔV than after infection with the parental virus. Taken together, the present results indicate that RIG-I and MDA5 both contribute to the recognition of MV and that the V protein promotes MV growth at least partly by inhibiting the MDA5-mediated IFN responses.

Original languageEnglish
Pages (from-to)372-379
Number of pages8
JournalJournal of virology
Volume84
Issue number1
DOIs
Publication statusPublished - Jan 1 2010

All Science Journal Classification (ASJC) codes

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells'. Together they form a unique fingerprint.

  • Cite this