TY - JOUR
T1 - Brazilian green propolis suppresses the hypoxia-induced neuroinflammatory responses by inhibiting NF- B activation in microglia
AU - Wu, Zhou
AU - Zhu, Aiqin
AU - Takayama, Fumiko
AU - Okada, Ryo
AU - Liu, Yicong
AU - Harada, Yuka
AU - Wu, Shizheng
AU - Nakanishi, Hiroshi
N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - Hypoxia has been recently proposed as a neuroinflammatogen, which drives microglia to produce proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α; (TNF-α;), and IL-6. Considering the fact that propolis has hepatoprotective, antitumor, antioxidative, and anti-inflammatory effects, propolis may have protective effects against the hypoxia-induced neuroinflammatory responses. In this study, propolis (50 g/mL) was found to significantly inhibit the hypoxia-induced cytotoxicity and the release of proinflammatory cytokines, including IL-1β, TNF-α;, and IL-6, by MG6 microglia following hypoxic exposure (1% O 2, 24 h). Furthermore, propolis significantly inhibited the hypoxia-induced generation of reactive oxygen species (ROS) from mitochondria and the activation of nuclear factor-B (NF-B) in microglia. Moreover, systemic treatment with propolis (8.33 mg/kg, 2 times/day, i.p.) for 7 days significantly suppressed the microglial expression of IL-1β, TNF-α;, IL-6, and 8-oxo-deoxyguanosine, a biomarker for oxidative damaged DNA, in the somatosensory cortex of mice subjected to hypoxia exposure (10% O2, 4 h). These observations indicate that propolis suppresses the hypoxia-induced neuroinflammatory responses through inhibition of the NF-B activation in microglia. Furthermore, increased generation of ROS from the mitochondria is responsible for the NF-B activation. Therefore, propolis may be beneficial in preventing hypoxia-induced neuroinflammation.
AB - Hypoxia has been recently proposed as a neuroinflammatogen, which drives microglia to produce proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α; (TNF-α;), and IL-6. Considering the fact that propolis has hepatoprotective, antitumor, antioxidative, and anti-inflammatory effects, propolis may have protective effects against the hypoxia-induced neuroinflammatory responses. In this study, propolis (50 g/mL) was found to significantly inhibit the hypoxia-induced cytotoxicity and the release of proinflammatory cytokines, including IL-1β, TNF-α;, and IL-6, by MG6 microglia following hypoxic exposure (1% O 2, 24 h). Furthermore, propolis significantly inhibited the hypoxia-induced generation of reactive oxygen species (ROS) from mitochondria and the activation of nuclear factor-B (NF-B) in microglia. Moreover, systemic treatment with propolis (8.33 mg/kg, 2 times/day, i.p.) for 7 days significantly suppressed the microglial expression of IL-1β, TNF-α;, IL-6, and 8-oxo-deoxyguanosine, a biomarker for oxidative damaged DNA, in the somatosensory cortex of mice subjected to hypoxia exposure (10% O2, 4 h). These observations indicate that propolis suppresses the hypoxia-induced neuroinflammatory responses through inhibition of the NF-B activation in microglia. Furthermore, increased generation of ROS from the mitochondria is responsible for the NF-B activation. Therefore, propolis may be beneficial in preventing hypoxia-induced neuroinflammation.
UR - http://www.scopus.com/inward/record.url?scp=84883176164&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84883176164&partnerID=8YFLogxK
U2 - 10.1155/2013/906726
DO - 10.1155/2013/906726
M3 - Article
C2 - 23983903
AN - SCOPUS:84883176164
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
SN - 1942-0900
M1 - 906726
ER -