TY - JOUR
T1 - Canonical realization of observers wilth arbitrarily assigned poles for linear functions of the state
AU - Kajiwara, Hiroyuki
AU - Furuta, Katsuhisa
N1 - Copyright:
Copyright 2015 Elsevier B.V., All rights reserved.
PY - 1979/3
Y1 - 1979/3
N2 - This paper shows that an observer Σob(Â, [Bcirc], Ĉ, [Dcirc], ˆJ) for a linear function Kx of the state of a time-invariant linear system Σ(A., B, C) is characterized by a new system ΣOB(Â, [Bcirc], Ĉ, [Dcirc]) with the initial state Ĵ which receives Markov parameters (CAtB)t =0, … +μ−1as the input and gives (KAtB)t=, v+μ−1as the output, where v is the controllability index of (A, B) and;μ is the observability index of (Â, Ĉ), It admits that the observer is constructed by a realization of σOB(Â, [Bcirc], Ĉ, [Dcirc]) from the input-output data and a determination of the initial state Ĵ. An algorithm is presented to construct the lower order observer with arbitrarihy assigned poles in a canonical form.
AB - This paper shows that an observer Σob(Â, [Bcirc], Ĉ, [Dcirc], ˆJ) for a linear function Kx of the state of a time-invariant linear system Σ(A., B, C) is characterized by a new system ΣOB(Â, [Bcirc], Ĉ, [Dcirc]) with the initial state Ĵ which receives Markov parameters (CAtB)t =0, … +μ−1as the input and gives (KAtB)t=, v+μ−1as the output, where v is the controllability index of (A, B) and;μ is the observability index of (Â, Ĉ), It admits that the observer is constructed by a realization of σOB(Â, [Bcirc], Ĉ, [Dcirc]) from the input-output data and a determination of the initial state Ĵ. An algorithm is presented to construct the lower order observer with arbitrarihy assigned poles in a canonical form.
UR - http://www.scopus.com/inward/record.url?scp=0018442914&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0018442914&partnerID=8YFLogxK
U2 - 10.1080/00207177908922711
DO - 10.1080/00207177908922711
M3 - Article
AN - SCOPUS:0018442914
VL - 29
SP - 457
EP - 469
JO - International Journal of Control
JF - International Journal of Control
SN - 0020-7179
IS - 3
ER -