TY - JOUR
T1 - Carbon from bagasse activated with water vapor and its adsorption performance for methylene blue
AU - Rahmawati, Fitria
AU - Ridassepri, Arikasuci Fitonna
AU - Chairunnisa,
AU - Wijayanta, Agung Tri
AU - Nakabayashi, Koji
AU - Miyawaki, Jin
AU - Miyazaki, Takahiko
N1 - Funding Information:
Funding: The research is supported by grants from the Bilateral Exchange Program JSPS/DG-RSTHE Joint Research Project 2020 from Japan Society for the Promotion of Science (JSPS) and Directorate General of Resources for Science Technology and Higher Education (DG-RSTHE) of the Indonesian Government.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/1/2
Y1 - 2021/1/2
N2 - This research work reports on the potential of bagasse, a solid waste from sugar factories, to produce activated-carbon (AC) as an adsorbent. The activation was conducted under 500, 600, and 700◦ C using steam as the activation agent to produce AC500, AC600, and AC700, respectively. The prepared-materials were characterized to understand their elemental content, surface morphology, thermal properties, functional groups identification, surface area, and pore size. AC700 provided the highest surface area of 592.36 m2 /g and indicated the contribution of mesopores distributes along 1.5–8.0 nm of pore size. Therefore, an adsorption test was conducted with AC700 as adsorbent. The results show that methylene blue (MB) adsorption reached equilibrium after 30 min of adsorption time. The adsorption isotherm applied to a monolayer Langmuir isotherm was fitted by linearization, resulting in a constant R2 of 0.999. The MB adsorption to AC700 favorably occurred, as proven by the Freundlich parameter 1/n of 0.881, which is less than 1. The Dubinin-Radushkevich isotherm confirmed that the adsorption proceeded through physical interaction with adsorption energy of 3.536 kJ/mol.
AB - This research work reports on the potential of bagasse, a solid waste from sugar factories, to produce activated-carbon (AC) as an adsorbent. The activation was conducted under 500, 600, and 700◦ C using steam as the activation agent to produce AC500, AC600, and AC700, respectively. The prepared-materials were characterized to understand their elemental content, surface morphology, thermal properties, functional groups identification, surface area, and pore size. AC700 provided the highest surface area of 592.36 m2 /g and indicated the contribution of mesopores distributes along 1.5–8.0 nm of pore size. Therefore, an adsorption test was conducted with AC700 as adsorbent. The results show that methylene blue (MB) adsorption reached equilibrium after 30 min of adsorption time. The adsorption isotherm applied to a monolayer Langmuir isotherm was fitted by linearization, resulting in a constant R2 of 0.999. The MB adsorption to AC700 favorably occurred, as proven by the Freundlich parameter 1/n of 0.881, which is less than 1. The Dubinin-Radushkevich isotherm confirmed that the adsorption proceeded through physical interaction with adsorption energy of 3.536 kJ/mol.
UR - http://www.scopus.com/inward/record.url?scp=85100176015&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100176015&partnerID=8YFLogxK
U2 - 10.3390/app11020678
DO - 10.3390/app11020678
M3 - Article
AN - SCOPUS:85100176015
SN - 2076-3417
VL - 11
SP - 1
EP - 16
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 2
M1 - 678
ER -