Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization

Tomohiro Shiraki, Yuhei Miyauchi, Kazunari Matsuda, Naotoshi Nakashima

Research output: Contribution to journalArticlepeer-review

Abstract

ConspectusCarbon nanotubes (CNTs) have been central materials in nanoscience and nanotechnologies. Single-walled CNTs (SWCNTs) consisting of a cylindrical graphene show a metallic (met) or semiconducting (sc) property depending on their rolling up manner (chirality). The sc-SWCNTs show characteristic chirality-dependent optical properties of their absorption and photoluminescence (PL) in the near-infrared (NIR) region. These are derived from their highly π-conjugated structures having semiconducting crystalline sp2 carbon networks with defined nanoarchitectures that afford a strong quantum confinement and weak dielectric screening. Consequently, photoirradiation of the SWCNTs produces a stable and mobile exciton (excited electron-hole pair) even at room temperature, and the exciton properties dominate such optical phenomena in the SWCNTs. However, the mobile excitons decrease the PL efficiency due to nonradiative relaxation including collision with tube edges and relaxation to lower-lying dark states. A breakthrough regarding the efficient use of the mobile exciton for PL has recently been achieved by local chemical functionalization of the SWCNTs, in which the chemical reactions introduce local defects of oxygen and sp3 carbon atoms in the tube structures. The defect doping creates new emissive doped sites that have narrower band gaps and trap the mobile excitons, which provides locally functionalized SWCNTs (lf-SWCNTs). As a result, the localized exciton produces E11* PL with red-shifted wavelengths and enhanced PL quantum yields compared to the original E11 PL of the nonmodified SWCNTs.In this Account, we describe recently revealed fundamental properties of the lf-SWCNTs based on the analyses by photophysics, theoretical calculations, and electrochemistry combined with in situ PL spectroscopy. The new insight allows us to expand the wavelength regions of the NIR E11* PL derived from the localized exciton, in which upconversion generates a higher energy PL through thermal activation and proximal doped site formation using bis-aryldiazonium modifiers provides a much lower energy PL than typical E11* PL. Moreover, owing to the chemical reaction-dominant doping process, the molecular structure design of modifiers succeeds in producing functionalized lf-SWCNTs; namely, molecular functions are incorporated into the doped sites for their PL modulation. The wavelength changes/switching in the E11* PL selectively occurs by a supramolecular approach using molecular recognition and imine chemistry. Therefore, the local chemical functionalization of the SWCNTs is a key to designing the properties and creating their new functions of the lf-SWCNTs. Fundamental understanding of the doped site properties of the lf-SWCNTs and molecularly driven approaches for exciton and defect engineering would unveil the intrinsic natures of these materials, which is crucial for elevating the SWCNT-based nanotechnologies to the next stage. The resulting materials are of interest in the fields of high performance NIR-II imaging and sensing for bio/medical analyses and single-photon emitters in quantum information technology.

Original languageEnglish
Pages (from-to)1846-1859
Number of pages14
JournalAccounts of Chemical Research
Volume53
Issue number9
DOIs
Publication statusPublished - Sep 15 2020

Fingerprint Dive into the research topics of 'Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization'. Together they form a unique fingerprint.

Cite this