TY - JOUR
T1 - Ca2+ waves in keratinocytes are transmitted to sensory neurons
T2 - The involvement of extracellular ATP and P2Y2 receptor activation
AU - Koizumi, Schuichi
AU - Fujishita, Kayoko
AU - Inoue, Kaori
AU - Shigemoto-Mogami, Yukari
AU - Tsuda, Makoto
AU - Inoue, Kazuhide
PY - 2004/6/1
Y1 - 2004/6/1
N2 - ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a coculture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP.
AB - ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a coculture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP.
UR - http://www.scopus.com/inward/record.url?scp=2942746282&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2942746282&partnerID=8YFLogxK
U2 - 10.1042/BJ20031089
DO - 10.1042/BJ20031089
M3 - Article
C2 - 14967069
AN - SCOPUS:2942746282
SN - 0264-6021
VL - 380
SP - 329
EP - 338
JO - Biochemical Journal
JF - Biochemical Journal
IS - 2
ER -