Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms

C. Tang, T. W.J. Van Asch, M. Chang, G. Q. Chen, X. H. Zhao, X. C. Huang

Research output: Contribution to journalArticle

123 Citations (Scopus)

Abstract

In the Wenchuan area in SW China, an abundance of loose co-seismic landslide debris was present on the slopes after the Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. Slopes composed of Cambrian sandstones and siltstones intercalated with slates appeared to be most susceptible to co-seismic landsliding. A total of 20 debris flows are described in this paper; all were triggered by heavy rainfall on 13th of August 2010. Field reconnaissance and measurements, supported by aerial photo interpretation, were conducted to identify the locations and morphological characteristics of the debris flow gullies in order to obtain information about surface area and volume of landslides and the debris flows. The debris flows in the study area were initiated by two processes: a) run-off erosion on co-seismic landslide material, and concentrated erosion of landslide debris in steep channels; b) new landslides that transform into debris flows. The volume of debris flow deposits on individual fans varies by many orders of magnitude. The smallest deposit has a volume of from 5760 to 3.1millionm 3. A comparison of the measured volumes, deposited on the fan with the volumes of debris stored in the catchment shows the huge potential for future debris flow activity. Whilst there is a weakly significant positive correlation between these two volumes, no significant statistical correlation could be established between volumes of debris flow deposits and other morphometric parameters of the catchment.A catastrophic debris flow catchment (the Wenjia catchment) was selected as an extreme case to show in detail the mechanism of debris flow formation as a result of intensive erosion in loose material, which was deposited by a rock avalanche during the 2008 Earthquake event. Analyses of the meteorological conditions that triggered these debris flows show one day antecedent precipitation varying between 67.7 and 137.6. mm, with a mean rainfall intensity of about 7.3 to 22.5. mm/h. A rainfall event with peak intensity of 38.7. mm/h triggered the largest debris flow event. Rainfall data related to five debris flow events in the Wenjia torrent was used to establish a primary rainfall intensity-duration relationship for the triggering of debris flows, which was compared to other rainfall duration thresholds from other parts of the world. In the discussion emphasis is laid on the need to unravel the process mechanisms which initiated the debris flows for a better understanding and assessment of meteorological thresholds.

Original languageEnglish
Pages (from-to)559-576
Number of pages18
JournalGeomorphology
Volume139-140
DOIs
Publication statusPublished - Feb 15 2012

Fingerprint

rainstorm
debris flow
earthquake
landslide
rainfall
catchment
effect
precipitation intensity
erosion
rock avalanche
earthquake event
torrent
gully
siltstone

All Science Journal Classification (ASJC) codes

  • Earth-Surface Processes

Cite this

Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China : The combined effects of a strong earthquake and subsequent rainstorms. / Tang, C.; Van Asch, T. W.J.; Chang, M.; Chen, G. Q.; Zhao, X. H.; Huang, X. C.

In: Geomorphology, Vol. 139-140, 15.02.2012, p. 559-576.

Research output: Contribution to journalArticle

@article{28f922b0fa3d45f1960fc831ca3023a7,
title = "Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms",
abstract = "In the Wenchuan area in SW China, an abundance of loose co-seismic landslide debris was present on the slopes after the Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. Slopes composed of Cambrian sandstones and siltstones intercalated with slates appeared to be most susceptible to co-seismic landsliding. A total of 20 debris flows are described in this paper; all were triggered by heavy rainfall on 13th of August 2010. Field reconnaissance and measurements, supported by aerial photo interpretation, were conducted to identify the locations and morphological characteristics of the debris flow gullies in order to obtain information about surface area and volume of landslides and the debris flows. The debris flows in the study area were initiated by two processes: a) run-off erosion on co-seismic landslide material, and concentrated erosion of landslide debris in steep channels; b) new landslides that transform into debris flows. The volume of debris flow deposits on individual fans varies by many orders of magnitude. The smallest deposit has a volume of from 5760 to 3.1millionm 3. A comparison of the measured volumes, deposited on the fan with the volumes of debris stored in the catchment shows the huge potential for future debris flow activity. Whilst there is a weakly significant positive correlation between these two volumes, no significant statistical correlation could be established between volumes of debris flow deposits and other morphometric parameters of the catchment.A catastrophic debris flow catchment (the Wenjia catchment) was selected as an extreme case to show in detail the mechanism of debris flow formation as a result of intensive erosion in loose material, which was deposited by a rock avalanche during the 2008 Earthquake event. Analyses of the meteorological conditions that triggered these debris flows show one day antecedent precipitation varying between 67.7 and 137.6. mm, with a mean rainfall intensity of about 7.3 to 22.5. mm/h. A rainfall event with peak intensity of 38.7. mm/h triggered the largest debris flow event. Rainfall data related to five debris flow events in the Wenjia torrent was used to establish a primary rainfall intensity-duration relationship for the triggering of debris flows, which was compared to other rainfall duration thresholds from other parts of the world. In the discussion emphasis is laid on the need to unravel the process mechanisms which initiated the debris flows for a better understanding and assessment of meteorological thresholds.",
author = "C. Tang and {Van Asch}, {T. W.J.} and M. Chang and Chen, {G. Q.} and Zhao, {X. H.} and Huang, {X. C.}",
year = "2012",
month = "2",
day = "15",
doi = "10.1016/j.geomorph.2011.12.021",
language = "English",
volume = "139-140",
pages = "559--576",
journal = "Geomorphology",
issn = "0169-555X",
publisher = "Elsevier",

}

TY - JOUR

T1 - Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China

T2 - The combined effects of a strong earthquake and subsequent rainstorms

AU - Tang, C.

AU - Van Asch, T. W.J.

AU - Chang, M.

AU - Chen, G. Q.

AU - Zhao, X. H.

AU - Huang, X. C.

PY - 2012/2/15

Y1 - 2012/2/15

N2 - In the Wenchuan area in SW China, an abundance of loose co-seismic landslide debris was present on the slopes after the Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. Slopes composed of Cambrian sandstones and siltstones intercalated with slates appeared to be most susceptible to co-seismic landsliding. A total of 20 debris flows are described in this paper; all were triggered by heavy rainfall on 13th of August 2010. Field reconnaissance and measurements, supported by aerial photo interpretation, were conducted to identify the locations and morphological characteristics of the debris flow gullies in order to obtain information about surface area and volume of landslides and the debris flows. The debris flows in the study area were initiated by two processes: a) run-off erosion on co-seismic landslide material, and concentrated erosion of landslide debris in steep channels; b) new landslides that transform into debris flows. The volume of debris flow deposits on individual fans varies by many orders of magnitude. The smallest deposit has a volume of from 5760 to 3.1millionm 3. A comparison of the measured volumes, deposited on the fan with the volumes of debris stored in the catchment shows the huge potential for future debris flow activity. Whilst there is a weakly significant positive correlation between these two volumes, no significant statistical correlation could be established between volumes of debris flow deposits and other morphometric parameters of the catchment.A catastrophic debris flow catchment (the Wenjia catchment) was selected as an extreme case to show in detail the mechanism of debris flow formation as a result of intensive erosion in loose material, which was deposited by a rock avalanche during the 2008 Earthquake event. Analyses of the meteorological conditions that triggered these debris flows show one day antecedent precipitation varying between 67.7 and 137.6. mm, with a mean rainfall intensity of about 7.3 to 22.5. mm/h. A rainfall event with peak intensity of 38.7. mm/h triggered the largest debris flow event. Rainfall data related to five debris flow events in the Wenjia torrent was used to establish a primary rainfall intensity-duration relationship for the triggering of debris flows, which was compared to other rainfall duration thresholds from other parts of the world. In the discussion emphasis is laid on the need to unravel the process mechanisms which initiated the debris flows for a better understanding and assessment of meteorological thresholds.

AB - In the Wenchuan area in SW China, an abundance of loose co-seismic landslide debris was present on the slopes after the Wenchuan earthquake, which in later years served as source material for rainfall-induced debris flows or shallow landslides. Slopes composed of Cambrian sandstones and siltstones intercalated with slates appeared to be most susceptible to co-seismic landsliding. A total of 20 debris flows are described in this paper; all were triggered by heavy rainfall on 13th of August 2010. Field reconnaissance and measurements, supported by aerial photo interpretation, were conducted to identify the locations and morphological characteristics of the debris flow gullies in order to obtain information about surface area and volume of landslides and the debris flows. The debris flows in the study area were initiated by two processes: a) run-off erosion on co-seismic landslide material, and concentrated erosion of landslide debris in steep channels; b) new landslides that transform into debris flows. The volume of debris flow deposits on individual fans varies by many orders of magnitude. The smallest deposit has a volume of from 5760 to 3.1millionm 3. A comparison of the measured volumes, deposited on the fan with the volumes of debris stored in the catchment shows the huge potential for future debris flow activity. Whilst there is a weakly significant positive correlation between these two volumes, no significant statistical correlation could be established between volumes of debris flow deposits and other morphometric parameters of the catchment.A catastrophic debris flow catchment (the Wenjia catchment) was selected as an extreme case to show in detail the mechanism of debris flow formation as a result of intensive erosion in loose material, which was deposited by a rock avalanche during the 2008 Earthquake event. Analyses of the meteorological conditions that triggered these debris flows show one day antecedent precipitation varying between 67.7 and 137.6. mm, with a mean rainfall intensity of about 7.3 to 22.5. mm/h. A rainfall event with peak intensity of 38.7. mm/h triggered the largest debris flow event. Rainfall data related to five debris flow events in the Wenjia torrent was used to establish a primary rainfall intensity-duration relationship for the triggering of debris flows, which was compared to other rainfall duration thresholds from other parts of the world. In the discussion emphasis is laid on the need to unravel the process mechanisms which initiated the debris flows for a better understanding and assessment of meteorological thresholds.

UR - http://www.scopus.com/inward/record.url?scp=84856003113&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84856003113&partnerID=8YFLogxK

U2 - 10.1016/j.geomorph.2011.12.021

DO - 10.1016/j.geomorph.2011.12.021

M3 - Article

AN - SCOPUS:84856003113

VL - 139-140

SP - 559

EP - 576

JO - Geomorphology

JF - Geomorphology

SN - 0169-555X

ER -