Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions

Shuichi Kawashima, Shinya Nishibata

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

This paper deals with the global existence and the time asymptotic state of solutions to the initial value problems for the system derived from approximating a one-dimensional model of a radiating gas. When the spatial derivative of the initial data is larger than a certain negative critical value, a unique solution exists globally in time. But if it is smaller than another negative critical value, the spatial derivative of the corresponding solution blows up in a finite time. Thus it is natural to think about weak solutions in a suitable sense. As a prototype of weak solutions, we consider the Cauchy problem with the Riemann initial data of which the left state is larger than the right state. This condition ensures the existence of the corresponding traveling wave, connecting the left state and the right state asymptotically. This Riemann problem admits a global weak solution, provided that the magnitude of the initial discontinuity is smaller than 1/2. Although the solution has a discontinuity, we have the uniqueness of a solution in weak sense by imposing the entropy condition. Furthermore, the magnitude of the discontinuity contained in the solution decays to zero with an exponential rate as the time t goes to infinity. Also, the solution approaches the corresponding traveling wave with the rate t-1/4 uniformly. The first result is obtained by the maximal principles. To show the second result, we have used an energy method with some estimates, which are also obtained through maximal principles.

Original languageEnglish
Pages (from-to)69-91
Number of pages23
JournalMathematical Models and Methods in Applied Sciences
Volume9
Issue number1
DOIs
Publication statusPublished - 1999

Fingerprint

Classical Solution
Weak Solution
Cauchy Problem
Jump
Discontinuity
Gases
Traveling Wave
Critical value
Entropy Condition
Derivative
Global Weak Solutions
Blow-up Solution
Energy Method
One-dimensional Model
Model
Unique Solution
Global Existence
Initial Value Problem
Uniqueness
Infinity

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Applied Mathematics

Cite this

Cauchy problem for a model system of the radiating gas : Weak solutions with a jump and classical solutions. / Kawashima, Shuichi; Nishibata, Shinya.

In: Mathematical Models and Methods in Applied Sciences, Vol. 9, No. 1, 1999, p. 69-91.

Research output: Contribution to journalArticle

@article{da6f0e4eebcd41ad9a341ae739e690cc,
title = "Cauchy problem for a model system of the radiating gas: Weak solutions with a jump and classical solutions",
abstract = "This paper deals with the global existence and the time asymptotic state of solutions to the initial value problems for the system derived from approximating a one-dimensional model of a radiating gas. When the spatial derivative of the initial data is larger than a certain negative critical value, a unique solution exists globally in time. But if it is smaller than another negative critical value, the spatial derivative of the corresponding solution blows up in a finite time. Thus it is natural to think about weak solutions in a suitable sense. As a prototype of weak solutions, we consider the Cauchy problem with the Riemann initial data of which the left state is larger than the right state. This condition ensures the existence of the corresponding traveling wave, connecting the left state and the right state asymptotically. This Riemann problem admits a global weak solution, provided that the magnitude of the initial discontinuity is smaller than 1/2. Although the solution has a discontinuity, we have the uniqueness of a solution in weak sense by imposing the entropy condition. Furthermore, the magnitude of the discontinuity contained in the solution decays to zero with an exponential rate as the time t goes to infinity. Also, the solution approaches the corresponding traveling wave with the rate t-1/4 uniformly. The first result is obtained by the maximal principles. To show the second result, we have used an energy method with some estimates, which are also obtained through maximal principles.",
author = "Shuichi Kawashima and Shinya Nishibata",
year = "1999",
doi = "10.1142/S0218202599000063",
language = "English",
volume = "9",
pages = "69--91",
journal = "Mathematical Models and Methods in Applied Sciences",
issn = "0218-2025",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "1",

}

TY - JOUR

T1 - Cauchy problem for a model system of the radiating gas

T2 - Weak solutions with a jump and classical solutions

AU - Kawashima, Shuichi

AU - Nishibata, Shinya

PY - 1999

Y1 - 1999

N2 - This paper deals with the global existence and the time asymptotic state of solutions to the initial value problems for the system derived from approximating a one-dimensional model of a radiating gas. When the spatial derivative of the initial data is larger than a certain negative critical value, a unique solution exists globally in time. But if it is smaller than another negative critical value, the spatial derivative of the corresponding solution blows up in a finite time. Thus it is natural to think about weak solutions in a suitable sense. As a prototype of weak solutions, we consider the Cauchy problem with the Riemann initial data of which the left state is larger than the right state. This condition ensures the existence of the corresponding traveling wave, connecting the left state and the right state asymptotically. This Riemann problem admits a global weak solution, provided that the magnitude of the initial discontinuity is smaller than 1/2. Although the solution has a discontinuity, we have the uniqueness of a solution in weak sense by imposing the entropy condition. Furthermore, the magnitude of the discontinuity contained in the solution decays to zero with an exponential rate as the time t goes to infinity. Also, the solution approaches the corresponding traveling wave with the rate t-1/4 uniformly. The first result is obtained by the maximal principles. To show the second result, we have used an energy method with some estimates, which are also obtained through maximal principles.

AB - This paper deals with the global existence and the time asymptotic state of solutions to the initial value problems for the system derived from approximating a one-dimensional model of a radiating gas. When the spatial derivative of the initial data is larger than a certain negative critical value, a unique solution exists globally in time. But if it is smaller than another negative critical value, the spatial derivative of the corresponding solution blows up in a finite time. Thus it is natural to think about weak solutions in a suitable sense. As a prototype of weak solutions, we consider the Cauchy problem with the Riemann initial data of which the left state is larger than the right state. This condition ensures the existence of the corresponding traveling wave, connecting the left state and the right state asymptotically. This Riemann problem admits a global weak solution, provided that the magnitude of the initial discontinuity is smaller than 1/2. Although the solution has a discontinuity, we have the uniqueness of a solution in weak sense by imposing the entropy condition. Furthermore, the magnitude of the discontinuity contained in the solution decays to zero with an exponential rate as the time t goes to infinity. Also, the solution approaches the corresponding traveling wave with the rate t-1/4 uniformly. The first result is obtained by the maximal principles. To show the second result, we have used an energy method with some estimates, which are also obtained through maximal principles.

UR - http://www.scopus.com/inward/record.url?scp=0033483284&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033483284&partnerID=8YFLogxK

U2 - 10.1142/S0218202599000063

DO - 10.1142/S0218202599000063

M3 - Article

AN - SCOPUS:0033483284

VL - 9

SP - 69

EP - 91

JO - Mathematical Models and Methods in Applied Sciences

JF - Mathematical Models and Methods in Applied Sciences

SN - 0218-2025

IS - 1

ER -