Cell manipulation method based on vibration-induced local flow control in open chip environment

Takeshi Hayakawa, Shinya Sakuma, Fumihito Arai

Research output: Contribution to journalConference articlepeer-review

Abstract

We present a novel cell manipulation method using vibration-induced local flow in open chip environment. By applying circular vibration to micropillars on a chip, local whirling flow is induced around the micropillars. From the observation of this unique phenomenon, we propose the concept of cell manipulation in open chip environment. We analyze this phenomenon theoretically, and evaluate the effect of the frequency and the amplitude of applied vibration. We design the micropillar array according to the analysis for transportation for oocytes. We apply the proposed method to transportation of mouse oocytes and confirm that the velocity of transportation is approximately 25 μm/s.

Original languageEnglish
Article number7050921
Pages (from-to)200-203
Number of pages4
JournalProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2015-February
Issue numberFebruary
DOIs
Publication statusPublished - Feb 26 2015
Externally publishedYes
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: Jan 18 2015Jan 22 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Cell manipulation method based on vibration-induced local flow control in open chip environment'. Together they form a unique fingerprint.

Cite this