TY - JOUR
T1 - Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice
T2 - Neuroprotective effect of tempol
AU - Fujisaki, Kiichiro
AU - Tsuruya, Kazuhiko
AU - Yamato, Mayumi
AU - Toyonaga, Jiro
AU - Noguchi, Hideko
AU - Nakano, Toshiaki
AU - Taniguchi, Masatomo
AU - Tokumoto, Masanori
AU - Hirakata, Hideki
AU - Kitazono, Takanari
N1 - Funding Information:
This work was supported in part by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 20590959).
PY - 2014/3
Y1 - 2014/3
N2 - BackgroundChronic kidney disease (CKD) is frequently associated with uremic encephalopathy and cognitive impairment. Recent studies have demonstrated that cerebral oxidative stress contributes to cognitive dysfunction. Although oxidative stress has been reported to increase in the uremic rat brain, the relationship between increased oxidative stress and cognitive impairment in uremia is unclear. In the present study, the effects of tempol (TMP), an antioxidant drug, were investigated in uremic mice.MethodsCKD was induced in male C57BL/6 mice (n = 8) by left nephrectomy and 2/3 electrocoagulation of the right renal cortex. Working memory performance was tested by the radial arm water maze test. We have prepared two protocols ('time course study' and 'treatment study'). First, we examined the working memory test and histological examination of mouse brains after 4 and 8 weeks. Next, we investigated the effect of TMP (3 mM) against uremia-induced neurodegeneration and oxidative stress in the mouse brain.ResultsEight weeks after CKD induction, vehicle-treated mice made significantly more errors than sham-operated control mice, while TMP improved working memory performance in CKD mice. CKD was associated with accumulation of 8-hydroxy-2′-deoxyguanosine in the hippocampal neuronal cells, but not in TMP-treated CKD mice. Increased numbers of pyknotic neuronal cells were observed in the hippocampus of CKD mice at 8 weeks, but pyknotic neuronal cell numbers were decreased under the influence of TMP in uremic mice.ConclusionsThe present study provided evidence that uremia is associated with spatial working memory dysfunction in mice and that treatment with TMP protects against cerebral oxidative stress and improves cognitive dysfunction in uremic mice, suggesting their potential usefulness for the treatment of cognitive dysfunction in uremia.
AB - BackgroundChronic kidney disease (CKD) is frequently associated with uremic encephalopathy and cognitive impairment. Recent studies have demonstrated that cerebral oxidative stress contributes to cognitive dysfunction. Although oxidative stress has been reported to increase in the uremic rat brain, the relationship between increased oxidative stress and cognitive impairment in uremia is unclear. In the present study, the effects of tempol (TMP), an antioxidant drug, were investigated in uremic mice.MethodsCKD was induced in male C57BL/6 mice (n = 8) by left nephrectomy and 2/3 electrocoagulation of the right renal cortex. Working memory performance was tested by the radial arm water maze test. We have prepared two protocols ('time course study' and 'treatment study'). First, we examined the working memory test and histological examination of mouse brains after 4 and 8 weeks. Next, we investigated the effect of TMP (3 mM) against uremia-induced neurodegeneration and oxidative stress in the mouse brain.ResultsEight weeks after CKD induction, vehicle-treated mice made significantly more errors than sham-operated control mice, while TMP improved working memory performance in CKD mice. CKD was associated with accumulation of 8-hydroxy-2′-deoxyguanosine in the hippocampal neuronal cells, but not in TMP-treated CKD mice. Increased numbers of pyknotic neuronal cells were observed in the hippocampus of CKD mice at 8 weeks, but pyknotic neuronal cell numbers were decreased under the influence of TMP in uremic mice.ConclusionsThe present study provided evidence that uremia is associated with spatial working memory dysfunction in mice and that treatment with TMP protects against cerebral oxidative stress and improves cognitive dysfunction in uremic mice, suggesting their potential usefulness for the treatment of cognitive dysfunction in uremia.
UR - http://www.scopus.com/inward/record.url?scp=84895762758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84895762758&partnerID=8YFLogxK
U2 - 10.1093/ndt/gft327
DO - 10.1093/ndt/gft327
M3 - Article
C2 - 24030834
AN - SCOPUS:84895762758
SN - 0931-0509
VL - 29
SP - 529
EP - 538
JO - Proceedings of the European Dialysis and Transplant Association - European Renal Association. European Dialysis and Transplant Association - European Renal Association. Congress
JF - Proceedings of the European Dialysis and Transplant Association - European Renal Association. European Dialysis and Transplant Association - European Renal Association. Congress
IS - 3
ER -