Characteristics of soil respiration in upper and lower slope positions with different aboveground biomass: A case study in a Japanese cypress forest

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Differences in aboveground biomass alonga slope position are often overserved because of varyinglevels of nutrient availability. Such differences can affect the spatial variation in soil respiration (Rsoil) via changes in biological factors (e.g., fine root biomass and litter mass), in addition to environmental factors. This study clarified the differences in Rsoil and the factors affecting Rsoil, between the upper and lower slope positions with contrastingaboveground biomass, within a small watershed covered by a Japanese cypress forest. The soil water content (SWC) was lower, whereas the soil temperature (Tsoil) and fine root biomass were higher in the upper plot (UP) than in the lower plot (LP). Rsoil was negatively correlated with SWC, but positively correlated with Tsoil and fine root biomass. These results gave rise to a positive effect of Rsoil on the UP. However, Rsoil was comparable between the plots. The results from a multiple linear regression model indicated that factors other than SWC, Tsoil, and fine root biomass increased Rsoil in the LP. We speculate that high litterfall could enhance Rsoil in the LP, as litterfall is an important source of decomposed respiration. The higher aboveground net primary production and lower fine root biomass in the LP suggest that more carbon was allocated aboveground and less carbon was allocated belowground, resultingin comparable Rsoil but different contribution of aboveground and belowground sources on Rsoil between the plots. It is considered that differences in phosphorus availability between the plots caused the different carbon allocation patterns, even at a small spatial scale of less than 100 m.

Original languageEnglish
Pages (from-to)63-70
Number of pages8
Journaljournal of agricultural meteorology
Volume74
Issue number2
DOIs
Publication statusPublished - Jan 1 2018

Fingerprint

soil respiration
aboveground biomass
fine root
case studies
biomass
soil water content
soil water
water content
litterfall
carbon
biomass allocation
net primary production
nutrient availability
soil temperature
spatial variation
primary productivity
litter
respiration
environmental factor
fine roots

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Atmospheric Science

Cite this

@article{105959046bee42f6aa5e976eec8dc079,
title = "Characteristics of soil respiration in upper and lower slope positions with different aboveground biomass: A case study in a Japanese cypress forest",
abstract = "Differences in aboveground biomass alonga slope position are often overserved because of varyinglevels of nutrient availability. Such differences can affect the spatial variation in soil respiration (Rsoil) via changes in biological factors (e.g., fine root biomass and litter mass), in addition to environmental factors. This study clarified the differences in Rsoil and the factors affecting Rsoil, between the upper and lower slope positions with contrastingaboveground biomass, within a small watershed covered by a Japanese cypress forest. The soil water content (SWC) was lower, whereas the soil temperature (Tsoil) and fine root biomass were higher in the upper plot (UP) than in the lower plot (LP). Rsoil was negatively correlated with SWC, but positively correlated with Tsoil and fine root biomass. These results gave rise to a positive effect of Rsoil on the UP. However, Rsoil was comparable between the plots. The results from a multiple linear regression model indicated that factors other than SWC, Tsoil, and fine root biomass increased Rsoil in the LP. We speculate that high litterfall could enhance Rsoil in the LP, as litterfall is an important source of decomposed respiration. The higher aboveground net primary production and lower fine root biomass in the LP suggest that more carbon was allocated aboveground and less carbon was allocated belowground, resultingin comparable Rsoil but different contribution of aboveground and belowground sources on Rsoil between the plots. It is considered that differences in phosphorus availability between the plots caused the different carbon allocation patterns, even at a small spatial scale of less than 100 m.",
author = "Ayumi Katayama and Tsutomu Enoki and Tomonori Kume and Kyoichi Otsuki",
year = "2018",
month = "1",
day = "1",
doi = "10.2480/agrmet.D-17-00019",
language = "English",
volume = "74",
pages = "63--70",
journal = "J. AGRICULTURAL METEOROLOGY",
issn = "0021-8588",
publisher = "Society of Agricultural Meteorology of Japan/Nihon Nogyo Kisho Gakkai",
number = "2",

}

TY - JOUR

T1 - Characteristics of soil respiration in upper and lower slope positions with different aboveground biomass

T2 - A case study in a Japanese cypress forest

AU - Katayama, Ayumi

AU - Enoki, Tsutomu

AU - Kume, Tomonori

AU - Otsuki, Kyoichi

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Differences in aboveground biomass alonga slope position are often overserved because of varyinglevels of nutrient availability. Such differences can affect the spatial variation in soil respiration (Rsoil) via changes in biological factors (e.g., fine root biomass and litter mass), in addition to environmental factors. This study clarified the differences in Rsoil and the factors affecting Rsoil, between the upper and lower slope positions with contrastingaboveground biomass, within a small watershed covered by a Japanese cypress forest. The soil water content (SWC) was lower, whereas the soil temperature (Tsoil) and fine root biomass were higher in the upper plot (UP) than in the lower plot (LP). Rsoil was negatively correlated with SWC, but positively correlated with Tsoil and fine root biomass. These results gave rise to a positive effect of Rsoil on the UP. However, Rsoil was comparable between the plots. The results from a multiple linear regression model indicated that factors other than SWC, Tsoil, and fine root biomass increased Rsoil in the LP. We speculate that high litterfall could enhance Rsoil in the LP, as litterfall is an important source of decomposed respiration. The higher aboveground net primary production and lower fine root biomass in the LP suggest that more carbon was allocated aboveground and less carbon was allocated belowground, resultingin comparable Rsoil but different contribution of aboveground and belowground sources on Rsoil between the plots. It is considered that differences in phosphorus availability between the plots caused the different carbon allocation patterns, even at a small spatial scale of less than 100 m.

AB - Differences in aboveground biomass alonga slope position are often overserved because of varyinglevels of nutrient availability. Such differences can affect the spatial variation in soil respiration (Rsoil) via changes in biological factors (e.g., fine root biomass and litter mass), in addition to environmental factors. This study clarified the differences in Rsoil and the factors affecting Rsoil, between the upper and lower slope positions with contrastingaboveground biomass, within a small watershed covered by a Japanese cypress forest. The soil water content (SWC) was lower, whereas the soil temperature (Tsoil) and fine root biomass were higher in the upper plot (UP) than in the lower plot (LP). Rsoil was negatively correlated with SWC, but positively correlated with Tsoil and fine root biomass. These results gave rise to a positive effect of Rsoil on the UP. However, Rsoil was comparable between the plots. The results from a multiple linear regression model indicated that factors other than SWC, Tsoil, and fine root biomass increased Rsoil in the LP. We speculate that high litterfall could enhance Rsoil in the LP, as litterfall is an important source of decomposed respiration. The higher aboveground net primary production and lower fine root biomass in the LP suggest that more carbon was allocated aboveground and less carbon was allocated belowground, resultingin comparable Rsoil but different contribution of aboveground and belowground sources on Rsoil between the plots. It is considered that differences in phosphorus availability between the plots caused the different carbon allocation patterns, even at a small spatial scale of less than 100 m.

UR - http://www.scopus.com/inward/record.url?scp=85045244348&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045244348&partnerID=8YFLogxK

U2 - 10.2480/agrmet.D-17-00019

DO - 10.2480/agrmet.D-17-00019

M3 - Article

AN - SCOPUS:85045244348

VL - 74

SP - 63

EP - 70

JO - J. AGRICULTURAL METEOROLOGY

JF - J. AGRICULTURAL METEOROLOGY

SN - 0021-8588

IS - 2

ER -