Characteristics of the diffuser/nozzle valve-less micro-pump

Seiichi Tanaka, Hiroshi Tsukamoto, Koji Miyazaki

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this study we have developed a valve-less micro-pump with one diffuser shaped element and a chamber with a diaphragm; the vibration of which produces an oscillating flow. The pressure-loss in a nozzle is lower than that in a diffuser, and therefore one-way flow is realized in the nozzle direction, The frequency characteristics and the pump characteristics are measured. The maximum total pump head and volumetric flow rate are 0.8 kPa and 2.4 ml/min respectively. The effect of working-fluid viscosity on pump characteristics is also discussed using water and glycerin-water solutions. As a result, the pump performances were found to decrease with increasing fluid viscosity and the pump performance depended on the Reynolds number of oscillating flow. The experimental results are discussed using a simplified model based on the Bernoulli's theory for unsteady flow in pump.

Original languageEnglish
Title of host publication2007 Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007
Pages1135-1142
Number of pages8
EditionPART B
DOIs
Publication statusPublished - 2007
Externally publishedYes
Event2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007 - San Diego, CA, United States
Duration: Jul 30 2007Aug 2 2007

Publication series

Name2007 Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007
NumberPART B
Volume1 SYMPOSIA

Other

Other2007 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007
Country/TerritoryUnited States
CitySan Diego, CA
Period7/30/078/2/07

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Characteristics of the diffuser/nozzle valve-less micro-pump'. Together they form a unique fingerprint.

Cite this