Characterization of [3H]nifedipine binding to intact vascular smooth muscle cells.

K. Sumimoto, M. Hirata, H. Kuriyama

Research output: Contribution to journalArticle

Abstract

Specific binding of the dihydropyridine Ca2+ antagonist [3H]nifedipine to dispersed smooth muscle cells of the porcine coronary artery was investigated and the findings were compared with the binding to microsomes of smooth muscles. Specific binding to intact cells was saturable and reversible. The dissociation constant was 1.93 +/- 0.42 nM and the maximal binding capacity was 59.6 +/- 12.4 fmol/10(6) cells, as assessed by Scatchard analysis of the equilibrium binding at 25 degrees C. The Kd value with intact cells was slightly higher than that observed with microsomes. Specific binding of [3H]nifedipine to intact cells was completely displaced by unlabeled dihydropyridine derivatives. Among other Ca2+ antagonists, verapamil and d-cis-diltiazem partially and flunarizine completely inhibited the binding. In the case of microsomes, d-cis-diltiazem stimulated the binding of [3H]nifedipine. These results suggest that there may be multiple binding sites for different subclasses of Ca2+ antagonists. Polyvalent cations had no effect on the binding to intact cells. In the case of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated microsomes, the addition of CaCl2 and BaCl2 increased the Bmax, but the Kd value remained unchanged. MnCl2 and CdCl2 had stimulatory or inhibitory effects, depending on the concentrations, whereas LaCl3 had no effect. The effect of membrane depolarization on the binding was also examined. When the intact cells were incubated in high [K+]o solution for 60 min, the Kd was lowered to 1.4 nM from the control value of 2.0 nM, thereby indicating that [3H]nifedipine binds to Ca2+ channels, with a higher affinity, at depolarized states.

Original languageEnglish
JournalThe American journal of physiology
Volume254
Issue number1 Pt 1
Publication statusPublished - Jan 1 1988

Fingerprint

Nifedipine
Vascular Smooth Muscle
Smooth Muscle Myocytes
Microsomes
Diltiazem
Flunarizine
Cadmium Chloride
Ethylene Glycol
Egtazic Acid
Verapamil
Ether
Smooth Muscle
Cations
Coronary Vessels
Swine
Binding Sites
Acids
Membranes

All Science Journal Classification (ASJC) codes

  • Physiology (medical)

Cite this

Characterization of [3H]nifedipine binding to intact vascular smooth muscle cells. / Sumimoto, K.; Hirata, M.; Kuriyama, H.

In: The American journal of physiology, Vol. 254, No. 1 Pt 1, 01.01.1988.

Research output: Contribution to journalArticle

Sumimoto, K. ; Hirata, M. ; Kuriyama, H. / Characterization of [3H]nifedipine binding to intact vascular smooth muscle cells. In: The American journal of physiology. 1988 ; Vol. 254, No. 1 Pt 1.
@article{b0f49586b055429490976713d0d2922b,
title = "Characterization of [3H]nifedipine binding to intact vascular smooth muscle cells.",
abstract = "Specific binding of the dihydropyridine Ca2+ antagonist [3H]nifedipine to dispersed smooth muscle cells of the porcine coronary artery was investigated and the findings were compared with the binding to microsomes of smooth muscles. Specific binding to intact cells was saturable and reversible. The dissociation constant was 1.93 +/- 0.42 nM and the maximal binding capacity was 59.6 +/- 12.4 fmol/10(6) cells, as assessed by Scatchard analysis of the equilibrium binding at 25 degrees C. The Kd value with intact cells was slightly higher than that observed with microsomes. Specific binding of [3H]nifedipine to intact cells was completely displaced by unlabeled dihydropyridine derivatives. Among other Ca2+ antagonists, verapamil and d-cis-diltiazem partially and flunarizine completely inhibited the binding. In the case of microsomes, d-cis-diltiazem stimulated the binding of [3H]nifedipine. These results suggest that there may be multiple binding sites for different subclasses of Ca2+ antagonists. Polyvalent cations had no effect on the binding to intact cells. In the case of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated microsomes, the addition of CaCl2 and BaCl2 increased the Bmax, but the Kd value remained unchanged. MnCl2 and CdCl2 had stimulatory or inhibitory effects, depending on the concentrations, whereas LaCl3 had no effect. The effect of membrane depolarization on the binding was also examined. When the intact cells were incubated in high [K+]o solution for 60 min, the Kd was lowered to 1.4 nM from the control value of 2.0 nM, thereby indicating that [3H]nifedipine binds to Ca2+ channels, with a higher affinity, at depolarized states.",
author = "K. Sumimoto and M. Hirata and H. Kuriyama",
year = "1988",
month = "1",
day = "1",
language = "English",
volume = "254",
journal = "The American journal of physiology",
issn = "0002-9513",
publisher = "American Physiological Society",
number = "1 Pt 1",

}

TY - JOUR

T1 - Characterization of [3H]nifedipine binding to intact vascular smooth muscle cells.

AU - Sumimoto, K.

AU - Hirata, M.

AU - Kuriyama, H.

PY - 1988/1/1

Y1 - 1988/1/1

N2 - Specific binding of the dihydropyridine Ca2+ antagonist [3H]nifedipine to dispersed smooth muscle cells of the porcine coronary artery was investigated and the findings were compared with the binding to microsomes of smooth muscles. Specific binding to intact cells was saturable and reversible. The dissociation constant was 1.93 +/- 0.42 nM and the maximal binding capacity was 59.6 +/- 12.4 fmol/10(6) cells, as assessed by Scatchard analysis of the equilibrium binding at 25 degrees C. The Kd value with intact cells was slightly higher than that observed with microsomes. Specific binding of [3H]nifedipine to intact cells was completely displaced by unlabeled dihydropyridine derivatives. Among other Ca2+ antagonists, verapamil and d-cis-diltiazem partially and flunarizine completely inhibited the binding. In the case of microsomes, d-cis-diltiazem stimulated the binding of [3H]nifedipine. These results suggest that there may be multiple binding sites for different subclasses of Ca2+ antagonists. Polyvalent cations had no effect on the binding to intact cells. In the case of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated microsomes, the addition of CaCl2 and BaCl2 increased the Bmax, but the Kd value remained unchanged. MnCl2 and CdCl2 had stimulatory or inhibitory effects, depending on the concentrations, whereas LaCl3 had no effect. The effect of membrane depolarization on the binding was also examined. When the intact cells were incubated in high [K+]o solution for 60 min, the Kd was lowered to 1.4 nM from the control value of 2.0 nM, thereby indicating that [3H]nifedipine binds to Ca2+ channels, with a higher affinity, at depolarized states.

AB - Specific binding of the dihydropyridine Ca2+ antagonist [3H]nifedipine to dispersed smooth muscle cells of the porcine coronary artery was investigated and the findings were compared with the binding to microsomes of smooth muscles. Specific binding to intact cells was saturable and reversible. The dissociation constant was 1.93 +/- 0.42 nM and the maximal binding capacity was 59.6 +/- 12.4 fmol/10(6) cells, as assessed by Scatchard analysis of the equilibrium binding at 25 degrees C. The Kd value with intact cells was slightly higher than that observed with microsomes. Specific binding of [3H]nifedipine to intact cells was completely displaced by unlabeled dihydropyridine derivatives. Among other Ca2+ antagonists, verapamil and d-cis-diltiazem partially and flunarizine completely inhibited the binding. In the case of microsomes, d-cis-diltiazem stimulated the binding of [3H]nifedipine. These results suggest that there may be multiple binding sites for different subclasses of Ca2+ antagonists. Polyvalent cations had no effect on the binding to intact cells. In the case of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated microsomes, the addition of CaCl2 and BaCl2 increased the Bmax, but the Kd value remained unchanged. MnCl2 and CdCl2 had stimulatory or inhibitory effects, depending on the concentrations, whereas LaCl3 had no effect. The effect of membrane depolarization on the binding was also examined. When the intact cells were incubated in high [K+]o solution for 60 min, the Kd was lowered to 1.4 nM from the control value of 2.0 nM, thereby indicating that [3H]nifedipine binds to Ca2+ channels, with a higher affinity, at depolarized states.

UR - http://www.scopus.com/inward/record.url?scp=0041399443&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0041399443&partnerID=8YFLogxK

M3 - Article

C2 - 3337220

VL - 254

JO - The American journal of physiology

JF - The American journal of physiology

SN - 0002-9513

IS - 1 Pt 1

ER -