Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide

P. Solís-Fernández, R. Rozada, J. I. Paredes, S. Villar-Rodil, M. J. Fernández-Merino, L. Guardia, A. Martínez-Alonso, J. M.D. Tascón

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

Chemical reduction of exfoliated graphite oxide (graphene oxide) has become one of the most promising routes for the mass production of graphene sheets. Nonetheless, the material obtained by this method exhibits considerable structural disorder and residual oxygen groups, and reports on their microscopic structure are quite scarce. We have investigated the structure and chemistry of graphene oxide samples reduced to different degrees using atomic force and scanning tunneling microscopy (AFM/STM) as well as X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD), respectively. TPD and XPS results indicate that reduction proceeds mainly by eliminating the most labile oxygen groups, which are ascribed to epoxides and hydroxyls on basal positions of the graphene plane. AFM/STM shows that the sheets are composed of buckled oxidized regions intermingled with flatter, non-oxidized ones, with the relative area of the latter increasing with the reduction degree.

Original languageEnglish
Pages (from-to)S532-S537
JournalJournal of Alloys and Compounds
Volume536
Issue numberSUPPL.1
DOIs
Publication statusPublished - Sep 25 2012
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide'. Together they form a unique fingerprint.

Cite this