Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s

Chaniga Chuensangjun, Takuya Kitaoka, Yusuf Chisti, Sarote Sirisansaneeyakul

Research output: Contribution to journalArticle

Abstract

Production of nanocomposites of poly(lactic acid) (PLA) grafted on surface-modified cellulose nanofibers (TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofibers), or TOCN-graft-poly(lactic acid) (PLA), is reported via an improved process. The surface-modified cellulose nanofibers forming the backbone of the composite matrix, were prepared from sugarcane bagasse bleached pulp (BBP). The temperature-time profile during the reaction between L-lactide and BBP-TOCN was controlled (raised from 25 °C to 140 °C over 20 min; held at 140 °C for 15 min; then reduced to 100 °C over 20 min; and held at this temperature for 24 h). At 8 h, the PLA-oligomers prepared separately by lipase catalyzed ring-opening polymerization of L-lactide, were added to the above mentioned reaction mixture. This production protocol enhanced the formation of ester bonds between the L-lactide and carboxylate groups on the surfaces of the modified cellulose nanofibers, to improve grafting. With the new preparation protocol, the carbonyl groups of PLA were covalently linked to the surface functional groups of BBP-TOCN with a 4.6-fold higher grafting ratio compared with the BBP-TOCN-g-PLA produced under otherwise identical reaction conditions but without adding the separately prepared PLA. The BBP-TOCN-g-PLA nanocomposites had a high crystallinity (>76%) and a small crystallite size (3.8 nm).

Original languageEnglish
Pages (from-to)308-318
Number of pages11
JournalEuropean Polymer Journal
Volume114
DOIs
Publication statusPublished - May 1 2019

Fingerprint

Bleached pulp
Bagasse
lactic acid
Lactic acid
Nanofibers
cellulose
Grafts
Cellulose
preparation
nanocomposites
Nanocomposites
oxidized cellulose
oligomers
carboxylates
Ring opening polymerization
Lipases
esters
crystallinity
Crystallite size
Lipase

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Cite this

Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s. / Chuensangjun, Chaniga; Kitaoka, Takuya; Chisti, Yusuf; Sirisansaneeyakul, Sarote.

In: European Polymer Journal, Vol. 114, 01.05.2019, p. 308-318.

Research output: Contribution to journalArticle

Chuensangjun, Chaniga ; Kitaoka, Takuya ; Chisti, Yusuf ; Sirisansaneeyakul, Sarote. / Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s. In: European Polymer Journal. 2019 ; Vol. 114. pp. 308-318.
@article{bcca7640229f4f8d997934a50580bc65,
title = "Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s",
abstract = "Production of nanocomposites of poly(lactic acid) (PLA) grafted on surface-modified cellulose nanofibers (TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofibers), or TOCN-graft-poly(lactic acid) (PLA), is reported via an improved process. The surface-modified cellulose nanofibers forming the backbone of the composite matrix, were prepared from sugarcane bagasse bleached pulp (BBP). The temperature-time profile during the reaction between L-lactide and BBP-TOCN was controlled (raised from 25 °C to 140 °C over 20 min; held at 140 °C for 15 min; then reduced to 100 °C over 20 min; and held at this temperature for 24 h). At 8 h, the PLA-oligomers prepared separately by lipase catalyzed ring-opening polymerization of L-lactide, were added to the above mentioned reaction mixture. This production protocol enhanced the formation of ester bonds between the L-lactide and carboxylate groups on the surfaces of the modified cellulose nanofibers, to improve grafting. With the new preparation protocol, the carbonyl groups of PLA were covalently linked to the surface functional groups of BBP-TOCN with a 4.6-fold higher grafting ratio compared with the BBP-TOCN-g-PLA produced under otherwise identical reaction conditions but without adding the separately prepared PLA. The BBP-TOCN-g-PLA nanocomposites had a high crystallinity (>76{\%}) and a small crystallite size (3.8 nm).",
author = "Chaniga Chuensangjun and Takuya Kitaoka and Yusuf Chisti and Sarote Sirisansaneeyakul",
year = "2019",
month = "5",
day = "1",
doi = "10.1016/j.eurpolymj.2019.02.036",
language = "English",
volume = "114",
pages = "308--318",
journal = "European Polymer Journal",
issn = "0014-3057",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Chemo-enzymatic preparation and characterization of cellulose nanofibers-graft-poly(lactic acid)s

AU - Chuensangjun, Chaniga

AU - Kitaoka, Takuya

AU - Chisti, Yusuf

AU - Sirisansaneeyakul, Sarote

PY - 2019/5/1

Y1 - 2019/5/1

N2 - Production of nanocomposites of poly(lactic acid) (PLA) grafted on surface-modified cellulose nanofibers (TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofibers), or TOCN-graft-poly(lactic acid) (PLA), is reported via an improved process. The surface-modified cellulose nanofibers forming the backbone of the composite matrix, were prepared from sugarcane bagasse bleached pulp (BBP). The temperature-time profile during the reaction between L-lactide and BBP-TOCN was controlled (raised from 25 °C to 140 °C over 20 min; held at 140 °C for 15 min; then reduced to 100 °C over 20 min; and held at this temperature for 24 h). At 8 h, the PLA-oligomers prepared separately by lipase catalyzed ring-opening polymerization of L-lactide, were added to the above mentioned reaction mixture. This production protocol enhanced the formation of ester bonds between the L-lactide and carboxylate groups on the surfaces of the modified cellulose nanofibers, to improve grafting. With the new preparation protocol, the carbonyl groups of PLA were covalently linked to the surface functional groups of BBP-TOCN with a 4.6-fold higher grafting ratio compared with the BBP-TOCN-g-PLA produced under otherwise identical reaction conditions but without adding the separately prepared PLA. The BBP-TOCN-g-PLA nanocomposites had a high crystallinity (>76%) and a small crystallite size (3.8 nm).

AB - Production of nanocomposites of poly(lactic acid) (PLA) grafted on surface-modified cellulose nanofibers (TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofibers), or TOCN-graft-poly(lactic acid) (PLA), is reported via an improved process. The surface-modified cellulose nanofibers forming the backbone of the composite matrix, were prepared from sugarcane bagasse bleached pulp (BBP). The temperature-time profile during the reaction between L-lactide and BBP-TOCN was controlled (raised from 25 °C to 140 °C over 20 min; held at 140 °C for 15 min; then reduced to 100 °C over 20 min; and held at this temperature for 24 h). At 8 h, the PLA-oligomers prepared separately by lipase catalyzed ring-opening polymerization of L-lactide, were added to the above mentioned reaction mixture. This production protocol enhanced the formation of ester bonds between the L-lactide and carboxylate groups on the surfaces of the modified cellulose nanofibers, to improve grafting. With the new preparation protocol, the carbonyl groups of PLA were covalently linked to the surface functional groups of BBP-TOCN with a 4.6-fold higher grafting ratio compared with the BBP-TOCN-g-PLA produced under otherwise identical reaction conditions but without adding the separately prepared PLA. The BBP-TOCN-g-PLA nanocomposites had a high crystallinity (>76%) and a small crystallite size (3.8 nm).

UR - http://www.scopus.com/inward/record.url?scp=85062385259&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062385259&partnerID=8YFLogxK

U2 - 10.1016/j.eurpolymj.2019.02.036

DO - 10.1016/j.eurpolymj.2019.02.036

M3 - Article

AN - SCOPUS:85062385259

VL - 114

SP - 308

EP - 318

JO - European Polymer Journal

JF - European Polymer Journal

SN - 0014-3057

ER -