Climate variability and nonstationary dynamics of mycoplasma pneumoniae pneumonia in Japan

Daisuke Onozuka, Luis Fernando Chaves

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Background: A stationary association between climate factors and epidemics of Mycoplasma pneumoniae (M. pneumoniae) pneumonia has been widely assumed. However, it is unclear whether elements of the local climate that are relevant to M. pneumoniae pneumonia transmission have stationary signatures of climate factors on their dynamics over different time scales. Methods: We performed a cross-wavelet coherency analysis to assess the patterns of association between monthly M. pneumoniae cases in Fukuoka, Japan, from 2000 to 2012 and indices for the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Results: Monthly M. pneumoniae cases were strongly associated with the dynamics of both the IOD and ENSO for the 1-2-year periodic mode in 2005-2007 and 2010-2011. This association was non-stationary and appeared to have a major influence on the synchrony of M. pneumoniae epidemics. Conclusions: Our results call for the consideration of non-stationary, possibly non-linear, patterns of association between M. pneumoniae cases and climatic factors in early warning systems.

Original languageEnglish
Article numbere95447
JournalPloS one
Volume9
Issue number4
DOIs
Publication statusPublished - Apr 16 2014

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Climate variability and nonstationary dynamics of mycoplasma pneumoniae pneumonia in Japan'. Together they form a unique fingerprint.

Cite this