Coevolution of phenotypic plasticity in predator and prey: Why are inducible offenses rarer than inducible defenses?

Akihiko Mougi, Osamu Kishida, Yoh Iwasa

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.

Original languageEnglish
Pages (from-to)1079-1087
Number of pages9
JournalEvolution
Volume65
Issue number4
DOIs
Publication statusPublished - Apr 1 2011

All Science Journal Classification (ASJC) codes

  • Agricultural and Biological Sciences(all)
  • Ecology, Evolution, Behavior and Systematics
  • Genetics

Fingerprint Dive into the research topics of 'Coevolution of phenotypic plasticity in predator and prey: Why are inducible offenses rarer than inducible defenses?'. Together they form a unique fingerprint.

  • Cite this