TY - JOUR
T1 - Collisionless electrostatic shock generation using high-energy laser systems
AU - Sakawa, Y.
AU - Morita, T.
AU - Kuramitsu, Y.
AU - Takabe, H.
N1 - Publisher Copyright:
© 2016, © 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2016/5/3
Y1 - 2016/5/3
N2 - Collisionless shock is ubiquitous in space and astrophysical plasmas, and is believed to be a source of cosmic rays. In this review article, historical achievements of three different types of collisionless shocks, i.e. magnetohydrodynamic, electromagnetic, and electrostatic (ES) shocks, in theory/simulation, observation in space and astrophysical plasmas, and laboratory experiments are shown. An overview is given on recent progress of collisionless ES shock experiments using high-energy laser systems for two schemes. One is an interaction between laser-produced high-density ablating plasma and a low-density ambient plasma, and the other is an interaction between laser-ablated counter-streaming plasmas using double-plane target. For the former scheme, detailed measurements of structures of collisionless ES shock and ion-acoustic soliton, and the transition from double-layer to collisionless ES shock are conducted by proton radiography. For the latter scheme, optical diagnostics are used to observe global structures of plasmas and shocks; collective laser Thomson scattering method is applied to clarify local plasma parameters, such as electron and ion temperatures, flow velocity, and electron density; and proton radiography is employed to measure a shock electric field. The measured large density-jump, steepening of self-emission profile, plasma parameters in the up- and down-stream regions of a shock, and the narrow width of the shock electric field compared with the ion-ion Coulomb mean-free-path reveal the evidence for the formation of collisionless ES shock.
AB - Collisionless shock is ubiquitous in space and astrophysical plasmas, and is believed to be a source of cosmic rays. In this review article, historical achievements of three different types of collisionless shocks, i.e. magnetohydrodynamic, electromagnetic, and electrostatic (ES) shocks, in theory/simulation, observation in space and astrophysical plasmas, and laboratory experiments are shown. An overview is given on recent progress of collisionless ES shock experiments using high-energy laser systems for two schemes. One is an interaction between laser-produced high-density ablating plasma and a low-density ambient plasma, and the other is an interaction between laser-ablated counter-streaming plasmas using double-plane target. For the former scheme, detailed measurements of structures of collisionless ES shock and ion-acoustic soliton, and the transition from double-layer to collisionless ES shock are conducted by proton radiography. For the latter scheme, optical diagnostics are used to observe global structures of plasmas and shocks; collective laser Thomson scattering method is applied to clarify local plasma parameters, such as electron and ion temperatures, flow velocity, and electron density; and proton radiography is employed to measure a shock electric field. The measured large density-jump, steepening of self-emission profile, plasma parameters in the up- and down-stream regions of a shock, and the narrow width of the shock electric field compared with the ion-ion Coulomb mean-free-path reveal the evidence for the formation of collisionless ES shock.
UR - http://www.scopus.com/inward/record.url?scp=85019358011&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019358011&partnerID=8YFLogxK
U2 - 10.1080/23746149.2016.1213660
DO - 10.1080/23746149.2016.1213660
M3 - Review article
AN - SCOPUS:85019358011
SN - 2374-6149
VL - 1
SP - 425
EP - 443
JO - Advances in Physics: X
JF - Advances in Physics: X
IS - 3
ER -