Abstract
Tungsten can be the preferred plasma-facing material for nuclear fusion reaction. In this work, W-Y 2 O 3 composite powder was successfully fabricated through the wet chemical method, and bulk materials were obtained by rolling and high temperature annealing. W-2 vol% Y 2 O 3 was exposed to 80 eV helium ion irradiation with a flux of 1.5 × 10 22 ions/(m 2 ·s) at 1503–1553 K to assess its thermal shock resistance and helium ion irradiation damage behavior. The thermal shock behaviors of samples were studied under a laser beam. The energy densities of the laser thermal shock were 0.32, 0.48, and 0.64 GW/m 2 . W-Y 2 O 3 was compared with commercial pure tungsten. The hardness of pure tungsten and W-Y 2 O 3 before and after helium irradiation was measured by using a micro-hardness tester. The surface micrograph after helium ion irradiation and thermal shock was observed through scanning electron microscopy. Results show that W-Y 2 O 3 composite materials have better resistance to laser thermal shock than pure tungsten.
Original language | English |
---|---|
Pages (from-to) | 102-106 |
Number of pages | 5 |
Journal | Fusion Engineering and Design |
Volume | 140 |
DOIs | |
Publication status | Published - Mar 2019 |
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Nuclear Energy and Engineering
- Materials Science(all)
- Mechanical Engineering