Abstract
The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (μ-e conversion, μ-N → e-N); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is 3.1 × 10-15, or 90% upper limit of a branching ratio of 7 × 10-15, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the μ-e conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
Original language | English |
---|---|
Article number | 033C01 |
Journal | Progress of Theoretical and Experimental Physics |
Volume | 2020 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 13 2020 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
Access to Document
Other files and links
Fingerprint Dive into the research topics of 'COMET Phase-I technical design report'. Together they form a unique fingerprint.
Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
COMET Phase-I technical design report. / Abramishvili, R.; Adamov, G.; Akhmetshin, R. R.; Allin, A.; Angélique, J. C.; Anishchik, V.; Aoki, M.; Aznabayev, D.; Bagaturia, I.; Ban, G.; Ban, Y.; Bauer, D.; Baygarashev, D.; Bondar, A. E.; Cârloganu, C.; Carniol, B.; Chau, T. T.; Chen, J. K.; Chen, S. J.; Cheung, Y. E.; Da Silva, W.; Dauncey, P. D.; Densham, C.; Devidze, G.; Dornan, P.; Drutskoy, A.; Duginov, V.; Eguchi, Y.; Epshteyn, L. B.; Evtoukhovitch, P.; Fayer, S.; Fedotovich, G. V.; Finger, M.; Finger, M.; Fujii, Y.; Fukao, Y.; Gabriel, J. L.; Gay, P.; Gillies, E.; Grigoriev, D. N.; Gritsay, K.; Hai, V. H.; Hamada, E.; Hashim, I. H.; Hashimoto, S.; Hayashi, O.; Hayashi, T.; Hiasa, T.; Ibrahim, Z. A.; Igarashi, Y.; Ignatov, F. V.; Iio, M.; Ishibashi, K.; Issadykov, A.; Itahashi, T.; Jansen, A.; Jiang, X. S.; Jonsson, P.; Kachelhoffer, T.; Kalinnikov, V.; Kaneva, E.; Kapusta, F.; Katayama, H.; Kawagoe, K.; Kawashima, R.; Kazak, N.; Kazanin, V. F.; Kemularia, O.; Khvedelidze, A.; Koike, M.; Kormoll, T.; Kozlov, G. A.; Kozyrev, A. N.; Kravchenko, M.; Krikler, B.; Kumsiashvili, G.; Kuno, Y.; Kuriyama, Y.; Kurochkin, Y.; Kurup, A.; Lagrange, B.; Lai, J.; Lee, M. J.; Li, H. B.; Litchfield, R. P.; Li, W. G.; Loan, T.; Lomidze, D.; Lomidze, I.; Loveridge, P.; Macharashvili, G.; Makida, Y.; Mao, Y. J.; Markin, O.; Matsuda, Y.; Melkadze, A.; Melnik, A.; Mibe, T.; Mihara, S.; Miyamoto, N.; Miyazaki, Y.; Mohamad Idris, F.; Azmi, K. A.Mohamed Kamal; Moiseenko, A.; Moritsu, M.; Mori, Y.; Motoishi, T.; Nakai, H.; Nakai, Y.; Nakamoto, T.; Nakamura, Y.; Nakatsugawa, Y.; Nakazawa, Y.; Nash, J.; Natori, H.; Niess, V.; Nioradze, M.; Nishiguchi, H.; Noguchi, K.; Numao, T.; O'dell, J.; Ogitsu, T.; Ohta, S.; Oishi, K.; Okamoto, K.; Okamura, T.; Okinaka, K.; Omori, C.; Ota, T.; Pasternak, J.; Paulau, A.; Picters, D.; Ponariadov, V.; Quémener, G.; Ruban, A. A.; Rusinov, V.; Sabirov, B.; Sakamoto, H.; Sarin, P.; Sasaki, K.; Sato, A.; Sato, J.; Semertzidis, Y. K.; Shigyo, N.; Shoukavy, Dz; Slunecka, M.; Stöckinger, D.; Sugano, M.; Tachimoto, T.; Takayanagi, T.; Tanaka, M.; Tang, J.; Tao, C. V.; Teixeira, A. M.; Tevzadze, Y.; Thanh, T.; Tojo, J.; Tolmachev, S. S.; Tomasek, M.; Tomizawa, M.; Toriashvili, T.; Trang, H.; Trekov, I.; Tsamalaidze, Z.; Tsverava, N.; Uchida, T.; Uchida, Y.; Ueno, K.; Velicheva, E.; Volkov, A.; Vrba, V.; Abdullah, W. A.T.Wan; Warin-Charpentier, P.; Wong, M. L.; Wong, T. S.; Wu, C.; Xing, T. Y.; Yamaguchi, H.; Yamamoto, A.; Yamanaka, M.; Yamane, T.; Yang, Y.; Yano, T.; Yao, W. C.; Yeo, B.; Yoshida, H.; Yoshida, M.; Yoshioka, T.; Yuan, Y.; Yudin, Yu V.; Zdorovets, M. V.; Zhang, J.; Zhang, Y.; Zuber, K.
In: Progress of Theoretical and Experimental Physics, Vol. 2020, No. 3, 033C01, 13.03.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - COMET Phase-I technical design report
AU - Abramishvili, R.
AU - Adamov, G.
AU - Akhmetshin, R. R.
AU - Allin, A.
AU - Angélique, J. C.
AU - Anishchik, V.
AU - Aoki, M.
AU - Aznabayev, D.
AU - Bagaturia, I.
AU - Ban, G.
AU - Ban, Y.
AU - Bauer, D.
AU - Baygarashev, D.
AU - Bondar, A. E.
AU - Cârloganu, C.
AU - Carniol, B.
AU - Chau, T. T.
AU - Chen, J. K.
AU - Chen, S. J.
AU - Cheung, Y. E.
AU - Da Silva, W.
AU - Dauncey, P. D.
AU - Densham, C.
AU - Devidze, G.
AU - Dornan, P.
AU - Drutskoy, A.
AU - Duginov, V.
AU - Eguchi, Y.
AU - Epshteyn, L. B.
AU - Evtoukhovitch, P.
AU - Fayer, S.
AU - Fedotovich, G. V.
AU - Finger, M.
AU - Finger, M.
AU - Fujii, Y.
AU - Fukao, Y.
AU - Gabriel, J. L.
AU - Gay, P.
AU - Gillies, E.
AU - Grigoriev, D. N.
AU - Gritsay, K.
AU - Hai, V. H.
AU - Hamada, E.
AU - Hashim, I. H.
AU - Hashimoto, S.
AU - Hayashi, O.
AU - Hayashi, T.
AU - Hiasa, T.
AU - Ibrahim, Z. A.
AU - Igarashi, Y.
AU - Ignatov, F. V.
AU - Iio, M.
AU - Ishibashi, K.
AU - Issadykov, A.
AU - Itahashi, T.
AU - Jansen, A.
AU - Jiang, X. S.
AU - Jonsson, P.
AU - Kachelhoffer, T.
AU - Kalinnikov, V.
AU - Kaneva, E.
AU - Kapusta, F.
AU - Katayama, H.
AU - Kawagoe, K.
AU - Kawashima, R.
AU - Kazak, N.
AU - Kazanin, V. F.
AU - Kemularia, O.
AU - Khvedelidze, A.
AU - Koike, M.
AU - Kormoll, T.
AU - Kozlov, G. A.
AU - Kozyrev, A. N.
AU - Kravchenko, M.
AU - Krikler, B.
AU - Kumsiashvili, G.
AU - Kuno, Y.
AU - Kuriyama, Y.
AU - Kurochkin, Y.
AU - Kurup, A.
AU - Lagrange, B.
AU - Lai, J.
AU - Lee, M. J.
AU - Li, H. B.
AU - Litchfield, R. P.
AU - Li, W. G.
AU - Loan, T.
AU - Lomidze, D.
AU - Lomidze, I.
AU - Loveridge, P.
AU - Macharashvili, G.
AU - Makida, Y.
AU - Mao, Y. J.
AU - Markin, O.
AU - Matsuda, Y.
AU - Melkadze, A.
AU - Melnik, A.
AU - Mibe, T.
AU - Mihara, S.
AU - Miyamoto, N.
AU - Miyazaki, Y.
AU - Mohamad Idris, F.
AU - Azmi, K. A.Mohamed Kamal
AU - Moiseenko, A.
AU - Moritsu, M.
AU - Mori, Y.
AU - Motoishi, T.
AU - Nakai, H.
AU - Nakai, Y.
AU - Nakamoto, T.
AU - Nakamura, Y.
AU - Nakatsugawa, Y.
AU - Nakazawa, Y.
AU - Nash, J.
AU - Natori, H.
AU - Niess, V.
AU - Nioradze, M.
AU - Nishiguchi, H.
AU - Noguchi, K.
AU - Numao, T.
AU - O'dell, J.
AU - Ogitsu, T.
AU - Ohta, S.
AU - Oishi, K.
AU - Okamoto, K.
AU - Okamura, T.
AU - Okinaka, K.
AU - Omori, C.
AU - Ota, T.
AU - Pasternak, J.
AU - Paulau, A.
AU - Picters, D.
AU - Ponariadov, V.
AU - Quémener, G.
AU - Ruban, A. A.
AU - Rusinov, V.
AU - Sabirov, B.
AU - Sakamoto, H.
AU - Sarin, P.
AU - Sasaki, K.
AU - Sato, A.
AU - Sato, J.
AU - Semertzidis, Y. K.
AU - Shigyo, N.
AU - Shoukavy, Dz
AU - Slunecka, M.
AU - Stöckinger, D.
AU - Sugano, M.
AU - Tachimoto, T.
AU - Takayanagi, T.
AU - Tanaka, M.
AU - Tang, J.
AU - Tao, C. V.
AU - Teixeira, A. M.
AU - Tevzadze, Y.
AU - Thanh, T.
AU - Tojo, J.
AU - Tolmachev, S. S.
AU - Tomasek, M.
AU - Tomizawa, M.
AU - Toriashvili, T.
AU - Trang, H.
AU - Trekov, I.
AU - Tsamalaidze, Z.
AU - Tsverava, N.
AU - Uchida, T.
AU - Uchida, Y.
AU - Ueno, K.
AU - Velicheva, E.
AU - Volkov, A.
AU - Vrba, V.
AU - Abdullah, W. A.T.Wan
AU - Warin-Charpentier, P.
AU - Wong, M. L.
AU - Wong, T. S.
AU - Wu, C.
AU - Xing, T. Y.
AU - Yamaguchi, H.
AU - Yamamoto, A.
AU - Yamanaka, M.
AU - Yamane, T.
AU - Yang, Y.
AU - Yano, T.
AU - Yao, W. C.
AU - Yeo, B.
AU - Yoshida, H.
AU - Yoshida, M.
AU - Yoshioka, T.
AU - Yuan, Y.
AU - Yudin, Yu V.
AU - Zdorovets, M. V.
AU - Zhang, J.
AU - Zhang, Y.
AU - Zuber, K.
N1 - Funding Information: We thank KEK and J-PARC, Japan for their support of infrastructure and the operation ofCOMET. Thiswork is supported in part by: the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 25000004 and 18H05231; JSPS KAKENHI Grant No. JP17H06135; the Belarusian Republican Foundation for Fundamental Research Grant F18R-006; the National Natural Science Foundation of China (NSFC) under Contract Nos. 11335009 and 11475208; the research program of the Institute of High Energy Physics (IHEP) under Contract No. Y3545111U2; the State Key Laboratory of Particle Detection and Electronics of IHEP, China, under Contract No. H929420BTD; supercomputer funding in Sun Yat-Sen University, China; the National Institute of Nuclear Physics and Particle Physics (IN2P3), France; the Shota Rustaveli National Science Foundation of Georgia (SRNSFG), grant No. DI-18-293; a Deutsche Forschungsgemeinschaft grant STO 876/7-1 of Germany; the Joint Institute for Nuclear Research (JINR), project COMET #1134; the Institute for Basic Science (IBS) of the Republic of Korea under Project No. IBS-R017-D1-2018-a00; the Ministry of Education and Science of the Russian Federation and by the Russian Fund for Basic Research grants: 17-02-01073, 18-52-00004; the Science and Technology Facilities Council, UK; the JSPS London Short Term Predoctoral Fellowship program, a Daiwa Anglo-Japanese Foundation Small Grant; and a Royal Society International Joint Projects Grant. Crucial computing support from all partners is gratefully acknowledged, in particular from CC-IN2P3, France; GridPP, UK; andYandex Data Factory, Russia, which also contributed expertise on machine learning methods. Funding Information: We thank KEK and J-PARC, Japan for their support of infrastructure and the operation of COMET. This work is supported in part by: the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Nos. 25000004 and 18H05231; JSPS KAKENHI Grant No. JP17H06135; the Belarusian Republican Foundation for Fundamental Research Grant F18R-006; the National Natural Science Foundation of China (NSFC) under Contract Nos. 11335009 and 11475208; the research program of the Institute of High Energy Physics (IHEP) under Contract No. Y3545111U2; the State Key Laboratory of Particle Detection and Electronics of IHEP, China, under Contract No. H929420BTD; supercomputer funding in Sun Yat-Sen University, China; the National Institute of Nuclear Physics and Particle Physics (IN2P3), France; the Shota Rustaveli National Science Foundation of Georgia (SRNSFG), grant No. DI-18-293; a Deutsche Forschungsgemeinschaft grant STO 876/7-1 of Germany; the Joint Institute for Nuclear Research (JINR), project COMET #1134; the Institute for Basic Science (IBS) of the Republic of Korea under Project No. IBS-R017-D1-2018-a00; the Ministry of Education and Science of the Russian Federation and by the Russian Fund for Basic Research grants: 17-02-01073, 18-52-00004; the Science and Technology Facilities Council, UK; the JSPS London Short Term Predoctoral Fellowship program, a Daiwa Anglo-Japanese Foundation Small Grant; and a Royal Society International Joint Projects Grant. Crucial computing support from all partners is gratefully acknowledged, in particular from CC-IN2P3, France; GridPP, UK; and Yandex Data Factory, Russia, which also contributed expertise on machine learning methods. Funding Information: and signal discrimination are performed by the ASD (amplifier shaper discriminator) chip9, and the amplified signal is then digitized by a DRS4 chip [76]. The digitized waveform data, correction data, and relevant metadata are then sent out via an optical fiber. The FPGA also has other input/output lines for triggering and JTAG connections. Development of the ROESTI board is supported by the KEK Electronics Group and the Open Source Consortium of Instrumentation (OpenIt). Publisher Copyright: © 2020 The Author(s).
PY - 2020/3/13
Y1 - 2020/3/13
N2 - The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (μ-e conversion, μ-N → e-N); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is 3.1 × 10-15, or 90% upper limit of a branching ratio of 7 × 10-15, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the μ-e conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
AB - The Technical Design for the COMET Phase-I experiment is presented in this paper. COMET is an experiment at J-PARC, Japan, which will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus (μ-e conversion, μ-N → e-N); a lepton flavor-violating process. The experimental sensitivity goal for this process in the Phase-I experiment is 3.1 × 10-15, or 90% upper limit of a branching ratio of 7 × 10-15, which is a factor of 100 improvement over the existing limit. The expected number of background events is 0.032. To achieve the target sensitivity and background level, the 3.2 kW 8 GeV proton beam from J-PARC will be used. Two types of detectors, CyDet and StrECAL, will be used for detecting the μ-e conversion events, and for measuring the beam-related background events in view of the Phase-II experiment, respectively. Results from simulation on signal and background estimations are also described.
UR - http://www.scopus.com/inward/record.url?scp=85082198127&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082198127&partnerID=8YFLogxK
U2 - 10.1093/ptep/ptz125
DO - 10.1093/ptep/ptz125
M3 - Article
AN - SCOPUS:85082198127
VL - 2020
JO - Progress of Theoretical and Experimental Physics
JF - Progress of Theoretical and Experimental Physics
SN - 2050-3911
IS - 3
M1 - 033C01
ER -