TY - JOUR
T1 - Comparative transcriptome profiling and characterization of gene expression for ovarian differentiation under RU486 treatment
AU - Sun, Shaohua
AU - Cai, Jing
AU - Tao, Wenjing
AU - Wu, Limin
AU - Tapas, Chakraborty
AU - Zhou, Linyan
AU - Wang, Deshou
N1 - Funding Information:
This work was supported in part by Grants for Scientific Research from the National Natural Science Foundation of China ( 31772825 , 31572597 , 31630082 , 31702316 and 31502147 ). This work was also supported in part by Fundamental Research Funds for the Central Universities, China ( XDJK2015A004 and XDJK2017D095 ) from Ministry of Education of China.
Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/5/15
Y1 - 2018/5/15
N2 - 17α, 20β-dihydroxypregn-4-en-3-one (17α, 20β-DP, DHP), a teleost specific biologically active progestin, has been proved to play a critical role in oocytes maturation, ovulation and spermiation. RU486 (Mifepristone, an antagonist of progestin receptor) has been applied in contraceptives, abortion and hormone therapy in clinical medicine. To get further insights into the molecular mechanisms of nuclear progestin receptor (Pgr) activated ovarian differentiation and maintenance, we conducted comparative gonadal transcriptome analysis, and investigated histological and transcriptional differences using 4 months after hatching (mah) RU486-treated XX and control XX/XY Nile tilapia (Oreochromis niloticus). DESeq analysis identified 7148 DEGs (differentially expressed genes) between RU486-treated and control XX gonads, while merely 442 DEGs were screened between the gonads of RU486-treated XX and control XY fish highlighting that RU486 treatment set forwards masculinity in XX fish. Comprehensive analysis of gene hierarchical clustering revealed that RU486 treatment in XX fish resulted in robust changes of gene expression profiles. In comparison with XX group, female-dominant genes were significantly repressed in RU486 treated XX fish gonads. Moreover, most parts of down-regulated genes in wild type female were evidently up-regulated genes in RU486-treated XX fish gonads. Comparing with control XY group, the majority of male-dominant genes represent a high level of expression. However, RU486-treatment led to an up-regulation of a cluster genes specifically which showed relative lower expression in both control XX and XY group. RU486-treatment mediated global changes of gene expression profiles in steroidogenesis, germ cell differentiation and follicular cell trans-differentiation were verified by quantitative PCR. Both morphological and immunohistochemistry results further proved that RU486 treatment initiates testicular-like gonads development in XX fish via simultaneously enhancing the male responsive genes and suppressing the female-dominant genes. Moreover, RU486 treatment caused significant decline of fshr, lhr and increase of ars. Taken together, our data confirms blocking of DHP physiology by RU486 treatment induces masculinization in XX gonad preferably via repressing of gonadotropin physiology, germ cell differentiation and promoting follicular trans-differentiation in teleosts.
AB - 17α, 20β-dihydroxypregn-4-en-3-one (17α, 20β-DP, DHP), a teleost specific biologically active progestin, has been proved to play a critical role in oocytes maturation, ovulation and spermiation. RU486 (Mifepristone, an antagonist of progestin receptor) has been applied in contraceptives, abortion and hormone therapy in clinical medicine. To get further insights into the molecular mechanisms of nuclear progestin receptor (Pgr) activated ovarian differentiation and maintenance, we conducted comparative gonadal transcriptome analysis, and investigated histological and transcriptional differences using 4 months after hatching (mah) RU486-treated XX and control XX/XY Nile tilapia (Oreochromis niloticus). DESeq analysis identified 7148 DEGs (differentially expressed genes) between RU486-treated and control XX gonads, while merely 442 DEGs were screened between the gonads of RU486-treated XX and control XY fish highlighting that RU486 treatment set forwards masculinity in XX fish. Comprehensive analysis of gene hierarchical clustering revealed that RU486 treatment in XX fish resulted in robust changes of gene expression profiles. In comparison with XX group, female-dominant genes were significantly repressed in RU486 treated XX fish gonads. Moreover, most parts of down-regulated genes in wild type female were evidently up-regulated genes in RU486-treated XX fish gonads. Comparing with control XY group, the majority of male-dominant genes represent a high level of expression. However, RU486-treatment led to an up-regulation of a cluster genes specifically which showed relative lower expression in both control XX and XY group. RU486-treatment mediated global changes of gene expression profiles in steroidogenesis, germ cell differentiation and follicular cell trans-differentiation were verified by quantitative PCR. Both morphological and immunohistochemistry results further proved that RU486 treatment initiates testicular-like gonads development in XX fish via simultaneously enhancing the male responsive genes and suppressing the female-dominant genes. Moreover, RU486 treatment caused significant decline of fshr, lhr and increase of ars. Taken together, our data confirms blocking of DHP physiology by RU486 treatment induces masculinization in XX gonad preferably via repressing of gonadotropin physiology, germ cell differentiation and promoting follicular trans-differentiation in teleosts.
UR - http://www.scopus.com/inward/record.url?scp=85043368752&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85043368752&partnerID=8YFLogxK
U2 - 10.1016/j.ygcen.2018.03.005
DO - 10.1016/j.ygcen.2018.03.005
M3 - Article
C2 - 29510151
AN - SCOPUS:85043368752
SN - 0016-6480
VL - 261
SP - 166
EP - 173
JO - General and Comparative Endocrinology
JF - General and Comparative Endocrinology
ER -