Comparing Geometry and Chemistry When Confined Molecules Diffuse in Monodisperse Metal-Organic Framework Pores

Ah Young Jee, Nobuhiro Yanai, Steve Granick

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The monodisperse pore structure of MOFs (metal-organic frameworks) is advantageous for investigating how porosity influences diffusion. Here we report translational and rotational diffusion using fluorescence correlation spectroscopy and time-correlated single-photon counting, using the three-dimensional pores of the zeolitic-like metal-organic framework family. We compare the influence of size and electric charge as well as dependence on pore size that we controlled through postsynthetic cation-exchange modifications. Charge-charge interactions with the MOF appeared to produce transient adsorption, manifested as a relatively fast and a slower diffusion process, but diffusants without net electric charge displayed a single diffusion process. Obtained from this family of guest molecules selected to be fluorescent, these findings suggest potentially useful general design rules to predict how pore size, guest size, and host-guest interaction control guest mobility within nanopores. With striking fidelity, diffusion coefficient scales with the ratio of cross-sectional areas of diffusant and host pores when charge is taken into account.

Original languageEnglish
Pages (from-to)6399-6403
Number of pages5
JournalJournal of Physical Chemistry Letters
Volume9
Issue number22
DOIs
Publication statusPublished - Nov 15 2018

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Comparing Geometry and Chemistry When Confined Molecules Diffuse in Monodisperse Metal-Organic Framework Pores'. Together they form a unique fingerprint.

Cite this