Comparison of chromium poisoning among solid oxide fuel cell cathode materials

Eunjoo Park, Shunsuke Taniguchi, Takeshi Daio, Jyh Tyng Chou, Kazunari Sasaki

Research output: Contribution to journalArticle

22 Citations (Scopus)

Abstract

Chromium poisoning phenomena of solid oxide fuel cells (SOFCs) were investigated using (La0.8Sr0.2)0.98MnO 3 (LSM), Pr0.8Sr0.2MnO3 (PrSM), Nd0.8Sr0.2MnO3 (NdSM), and Br 0.5Sr0.5Co0.8Fe0.2O3 (BSCF) for the cathode materials and yttria-stabilized zirconia (YSZ) as the electrolyte material at 700 °C under constant cathode polarization conditions. Deposition of chromium increased with increasing cathode polarization similarly for the four cathodes, although position of the deposition was different for the BSCF cathode. Chromium deposited near the cathode/electrolyte interface for the LSM cathode, the PrSM cathode and the NdSM cathode. Chromium deposition on the surface of the zirconia electrolyte was observed for the PrSM cathode and the NdSM cathode as previously observed in the LSM cathode. Oxygen deficiency in the deposited chromium on the surface of the zirconia electrolyte was also observed, thus the reaction mechanism of chromium vapor with the oxygen vacancy induced by cathode polarization was supported. The oxygen vacancy on the surface of the zirconia electrolyte seemed to be generated via metal oxides such as manganese oxide or neodymium oxide segregated from the cathode materials. Chromium deposited on the surface of the BSCF cathode. Cathode polarization seems to increase reactivity of BSCF and enhance trapping of chromium vapor near the cathode surface.

Original languageEnglish
Pages (from-to)421-427
Number of pages7
JournalSolid State Ionics
Volume262
DOIs
Publication statusPublished - Sep 1 2014

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Comparison of chromium poisoning among solid oxide fuel cell cathode materials'. Together they form a unique fingerprint.

Cite this