Compliant-parallel mechanism for high precision machine with a wide range of working area

Hiroaki Kozuka, Jumpei Arata, Kenji Okuda, Akinori Onaga, Motoshi Ohno, Akihito Sano, Hideo Fujimoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

In this paper, we introduce a further optimization of morphology of compliant joint based on FEM analysis for a compliant-parallel mechanism with a wide working area and a high accuracy. Compliant-parallel mechanism is the mechanism that all joints are composed by compliant joints in a parallel structure. In the integration of compliant and parallel mechanism, the motion of compliant joints can be guided by mechanical constraints from the parallel structure; thus the mechanism can be precisely driven. However, since compliant joints generally have a limited working area due to limitation in their structural deformation, the working area is commonly limited in micrometer-scale. Designing the compliant joints within a wide range of working area presents us a new challenge: the joints should be elastic for the desired direction, but also rigid for non-desired direction to be deformed. From these requirements, the morphology of the compliant joint was optimized by FEM analysis, and newly serially layered-flat spring compliant joint was developed. The developed compliant joint was implemented on a parallel mechanism as a high precision micro-assembly system for optical components. The prototype enabled 50×50×5 mm of working area within 0.71 mm of repeatable accuracy. From these results, the effectiveness of the morphological optimization for compliant joint was shown.

Original languageEnglish
Title of host publication2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
Pages2519-2524
Number of pages6
DOIs
Publication statusPublished - 2012
Externally publishedYes
Event25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 - Vilamoura, Algarve, Portugal
Duration: Oct 7 2012Oct 12 2012

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
CountryPortugal
CityVilamoura, Algarve
Period10/7/1210/12/12

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Compliant-parallel mechanism for high precision machine with a wide range of working area'. Together they form a unique fingerprint.

Cite this