Abstract
Composite powder of intermetallic compound (TiAl) and carbide (TiC) was prepared from elemental powders of titanium, aluminum and graphite by means of mechanical alloying, and the formation process of the composite was investigated in relation to the solid state reactions among the elemental powders. Mixed powders with a chemical composition of Ti-25at%Al-25at%C were mechanically milled in vacuum with centrifugel boll mill. After 10.8ks milling, lamellar structure of titanium and aluminum was formed, and graphite seemed to be finely crushed and included into the powder. The solid state reactions forming the composite microstructure occured after about 12ks milling. At first, finely dispersed graphite reacts with titanium to form TiC, and then local temperature rising caused by the exothermic reaction, Ti + Al.N TiC + 180 kJ/mol, activates the diffusion between titanium and aluminum, which enables the elements to form the intermetallic compound (TiAl). The microstructure of TiC/TiAl composite powder prepared by this process is so fine that the components can not be distinguished with EPMA, although they can be identified by means of X-ray diffraction technics.
Original language | English |
---|---|
Pages (from-to) | 830-835 |
Number of pages | 6 |
Journal | Journal of the Japan Society of Powder and Powder Metallurgy |
Volume | 39 |
Issue number | 10 |
DOIs | |
Publication status | Published - Jul 1992 |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Metals and Alloys
- Materials Chemistry