TY - JOUR
T1 - Compound A inhibits urothelial tumorigenesis via both the androgen receptor and glucocorticoid receptor signaling pathways
AU - Ide, Hiroki
AU - Inoue, Satoshi
AU - Mizushima, Taichi
AU - Jiang, Guiyang
AU - Nagata, Yujiro
AU - Goto, Takuro
AU - Kashiwagi, Eiji
AU - Miyamoto, Hiroshi
N1 - Publisher Copyright:
© 2020 E-Century Publishing Corporation. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020
Y1 - 2020
N2 - Recent preclinical evidence has indicated that both androgen receptor (AR) inactivation and glucocorticoid receptor (GR) transrepression are associated with suppression of urothelial carcinogenesis. We therefore assessed the effect of a unique compound, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride (Compound A; CpdA), which could function as an AR antagonist as well as a GR ligand, on urothelial tumorigenesis. Using the in vitro system with GR-positive non-neoplastic urothelial SVHUC cells stably expressing AR (SVHUC-AR), neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA) was inhibited similarly by an anti-androgen hydroxyflutamide and a glucocorticoid prednisone, and more strongly by CpdA. CpdA also prevented the neoplastic transformation of AR-negative MCA-SVHUC cells, which was diminished by a GR antagonist RU486, but failed to prevent that of GR knockdown MCA-SVHUC cells. In MCA-SVHUC-AR cells, CpdA significantly reduced the expression levels of oncogenes (c-Fos/c-Jun/c-Myc) and induced those of tumor suppressors (UGT1A/p21/p27/ p53/PTEN). Additionally, a potent carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine induced bladder cancer in all of 8 mock-treated mice versus 4 (50%) of flutamide-treated (P = 0.021), 4 (50%) of prednisone-treated (P = 0.021), or 2 (25%) of CpdA-treated (P = 0.002) animals. Finally, CpdA was found to reduce AR transactivation and selectively induce GR transrepression (i.e. suppression of NF-κB transactivation and expression of its regulated genes), but not GR transactivation (i.e. activation of glucocorticoid-response element-mediated transcription and expression of its targets) in SVHUC cells. These findings suggest that CpdA suppresses urothelial tumorigenesis via both the AR and GR pathways, which may consequently provide an effective option of chemoprevention for bladder cancer, especially in patients with superficial disease following transurethral surgery.
AB - Recent preclinical evidence has indicated that both androgen receptor (AR) inactivation and glucocorticoid receptor (GR) transrepression are associated with suppression of urothelial carcinogenesis. We therefore assessed the effect of a unique compound, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium chloride (Compound A; CpdA), which could function as an AR antagonist as well as a GR ligand, on urothelial tumorigenesis. Using the in vitro system with GR-positive non-neoplastic urothelial SVHUC cells stably expressing AR (SVHUC-AR), neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA) was inhibited similarly by an anti-androgen hydroxyflutamide and a glucocorticoid prednisone, and more strongly by CpdA. CpdA also prevented the neoplastic transformation of AR-negative MCA-SVHUC cells, which was diminished by a GR antagonist RU486, but failed to prevent that of GR knockdown MCA-SVHUC cells. In MCA-SVHUC-AR cells, CpdA significantly reduced the expression levels of oncogenes (c-Fos/c-Jun/c-Myc) and induced those of tumor suppressors (UGT1A/p21/p27/ p53/PTEN). Additionally, a potent carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine induced bladder cancer in all of 8 mock-treated mice versus 4 (50%) of flutamide-treated (P = 0.021), 4 (50%) of prednisone-treated (P = 0.021), or 2 (25%) of CpdA-treated (P = 0.002) animals. Finally, CpdA was found to reduce AR transactivation and selectively induce GR transrepression (i.e. suppression of NF-κB transactivation and expression of its regulated genes), but not GR transactivation (i.e. activation of glucocorticoid-response element-mediated transcription and expression of its targets) in SVHUC cells. These findings suggest that CpdA suppresses urothelial tumorigenesis via both the AR and GR pathways, which may consequently provide an effective option of chemoprevention for bladder cancer, especially in patients with superficial disease following transurethral surgery.
UR - http://www.scopus.com/inward/record.url?scp=85086327777&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086327777&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85086327777
SN - 1943-8141
VL - 12
SP - 1779
EP - 1788
JO - American Journal of Translational Research
JF - American Journal of Translational Research
IS - 5
ER -