TY - JOUR
T1 - Comprehensive expression of wnt signaling pathway genes during development and maturation of the mouse cochlea
AU - Geng, Ruishuang
AU - Noda, Teppei
AU - Mulvaney, Joanna F.
AU - Lin, Vincent Y.W.
AU - Edge, Albert S.B.
AU - Dabdoub, Alain
N1 - Funding Information:
We thank Drs. Stricker and De Robertis for providing Dkk3 and Sfrp3 plasmids respectively. We also thank Dr. D. Sweetman for providing comments on an earlier version of the manuscript. Funding for this study was provided by the Hearing Health Foundation’s Hearing Restoration Project (AE, AD) and the Sunnybrook Hearing Regeneration Initiative.
Publisher Copyright:
© 2016 Geng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/2
Y1 - 2016/2
N2 - Background In the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points. Results We identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30. These genes included secreted Wnts, Wnt antagonists, intracellular components of canonical signaling and components of non-canonical signaling/ planar cell polarity. Conclusion A large number of Wnt signaling molecules were dynamically expressed during cochlear development and in the early postnatal period, suggesting complex regulation of Wnt transduction. The data revealed several potential key regulators for further study.
AB - Background In the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points. Results We identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30. These genes included secreted Wnts, Wnt antagonists, intracellular components of canonical signaling and components of non-canonical signaling/ planar cell polarity. Conclusion A large number of Wnt signaling molecules were dynamically expressed during cochlear development and in the early postnatal period, suggesting complex regulation of Wnt transduction. The data revealed several potential key regulators for further study.
UR - http://www.scopus.com/inward/record.url?scp=84959431716&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959431716&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0148339
DO - 10.1371/journal.pone.0148339
M3 - Article
C2 - 26859490
AN - SCOPUS:84959431716
SN - 1932-6203
VL - 11
JO - PLoS One
JF - PLoS One
IS - 2
M1 - e0148339
ER -