Computational investigation of fuel injection with various injector geometries and mixing into hypersonic crossflow in scramjet engines

H. Ogawa, R. R. Boyce

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

Efficient fuel/air mixing plays a crucial role in successful operation of hypersonic airbreathing engines, particularly scramjets, where fuel must be injected into high-speed crossflow and mixed with air at an extremely short timescale. This paper presents the results of a numerical study that investigates the effects of various orifice shapes on fuel mixing into hypersonic airflow at Mach 5, aiming at the application to scramjet operation at Mach 10. The performance of the injectors are assessed with respect to various criteria such as the mixing efficiency, streamwise circulation, total pressure recovery, and fuel penetration. The injection flowfields are scrutinized in order to identify the key geometric features and underlying flow mechanism that are responsible for mixing enhancement, with particular focus on the interactions of the jet plume with streamwise vortices.

Original languageEnglish
Title of host publication51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Print)9781624101816
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 - Grapevine, TX, United States
Duration: Jan 7 2013Jan 10 2013

Publication series

Name51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013

Other

Other51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
CountryUnited States
CityGrapevine, TX
Period1/7/131/10/13

All Science Journal Classification (ASJC) codes

  • Space and Planetary Science
  • Aerospace Engineering

Fingerprint Dive into the research topics of 'Computational investigation of fuel injection with various injector geometries and mixing into hypersonic crossflow in scramjet engines'. Together they form a unique fingerprint.

Cite this