Computing all distinct squares in linear time for integer alphabets

Hideo Bannai, Shunsuke Inenaga, Dominik Köppl

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Given a string on an integer alphabet, we present an algorithm that computes the set of all distinct squares belonging to this string in time linear in the string length. As an application, we show how to compute the tree topology of the minimal augmented suffix tree in linear time. Asides from that, we elaborate an algorithm computing the longest previous table in a succinct representation using compressed working space.

Original languageEnglish
Title of host publication28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017
EditorsJakub Radoszewski, Juha Karkkainen, Jakub Radoszewski, Wojciech Rytter
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959770392
DOIs
Publication statusPublished - Jul 1 2017
Event28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 - Warsaw, Poland
Duration: Jul 4 2017Jul 6 2017

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume78
ISSN (Print)1868-8969

Other

Other28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017
CountryPoland
CityWarsaw
Period7/4/177/6/17

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint Dive into the research topics of 'Computing all distinct squares in linear time for integer alphabets'. Together they form a unique fingerprint.

  • Cite this

    Bannai, H., Inenaga, S., & Köppl, D. (2017). Computing all distinct squares in linear time for integer alphabets. In J. Radoszewski, J. Karkkainen, J. Radoszewski, & W. Rytter (Eds.), 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 [22] (Leibniz International Proceedings in Informatics, LIPIcs; Vol. 78). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.22