Computing smallest and largest repetition factorizations in O(n log n) time

Hiroe Inoue, Yoshiaki Matsuoka, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

A factorization f1, . . . , fm of a string w is called a repetition factorization of w if each factor fi is a repetition, namely, fi = xkx' for some non-empty string x, an integer k ≥ 2, and x' being a proper prefix of x. Dumitran et al. (Proc. SPIRE 2015) proposed an algorithm which computes a repetition factorization of a given string w in O(n) time, where n is the length of w. In this paper, we propose two algorithms which compute smallest/largest repetition factorizations in O(n log n) time. The first algorithm is a simple O(n log n) space algorithm while the second one uses only O(n) space.

Original languageEnglish
Title of host publicationProceedings of the Prague Stringology Conference, PSC 2016
EditorsJan Holub, Jan Zdarek
PublisherPrague Stringology Club
Pages135-145
Number of pages11
ISBN (Electronic)9788001059968
Publication statusPublished - 2016
Event20th Prague Stringology Conference, PSC 2016 - Prague, Czech Republic
Duration: Aug 29 2016Aug 31 2016

Publication series

NameProceedings of the Prague Stringology Conference, PSC 2016

Conference

Conference20th Prague Stringology Conference, PSC 2016
CountryCzech Republic
CityPrague
Period8/29/168/31/16

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Computing smallest and largest repetition factorizations in O(n log n) time'. Together they form a unique fingerprint.

  • Cite this

    Inoue, H., Matsuoka, Y., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2016). Computing smallest and largest repetition factorizations in O(n log n) time. In J. Holub, & J. Zdarek (Eds.), Proceedings of the Prague Stringology Conference, PSC 2016 (pp. 135-145). (Proceedings of the Prague Stringology Conference, PSC 2016). Prague Stringology Club.