TY - JOUR
T1 - Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model
AU - Karimi, Alireza
AU - Razaghi, Reza
AU - Navidbakhsh, Mahdi
AU - Sera, Toshihiro
AU - Kudo, Susumu
N1 - Publisher Copyright:
© 2016 Elsevier Ltd.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Introduction In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Materials and methods Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. Results The results revealed a peak stress of 135.70 kPa brought about by detonation upsurge on the cornea at the distance of 25 cm. The highest von Mises stresses were observed on the sclera (267.3 kPa), whereas the lowest one was seen on the vitreous body (0.002 kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. Conclusion These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye.
AB - Introduction In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model. Materials and methods Magnetic Resonance Imaging (MRI) was employed to establish a Finite Element (FE) model of the human eye according to a normal human eye. The solid components of the eye were modelled as Lagrangian mesh, while an explosive TNT, air domain, and aqueous were modelled using Arbitrary Lagrangian-Eulerian (ALE) mesh. Nonlinear dynamic FE simulations were accomplished using the explicit FE code, namely LS-DYNA. In order to simulate the blast wave generation, propagation, and interaction with the eye, the ALE formulation with Jones-Wilkins-Lee (JWL) equation defining the explosive material were employed. Results The results revealed a peak stress of 135.70 kPa brought about by detonation upsurge on the cornea at the distance of 25 cm. The highest von Mises stresses were observed on the sclera (267.3 kPa), whereas the lowest one was seen on the vitreous body (0.002 kPa). The results also showed a relatively high resultant displacement for the macula as well as a high variation for the radius of curvature for the cornea and lens, which can result in both macular holes, optic nerve damage and, consequently, vision loss. Conclusion These results may have implications not only for understanding the value of stresses and strains in the human eye components but also giving an outlook about the process of PBW triggers damage to the eye.
UR - http://www.scopus.com/inward/record.url?scp=84965079452&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84965079452&partnerID=8YFLogxK
U2 - 10.1016/j.injury.2016.01.030
DO - 10.1016/j.injury.2016.01.030
M3 - Article
C2 - 26861803
AN - SCOPUS:84965079452
SN - 0020-1383
VL - 47
SP - 1042
EP - 1050
JO - Injury
JF - Injury
IS - 5
ER -