Abstract
Chromosomal translocations that fuse the mixed lineage leukemia (MLL) gene with multiple partners typify acute leukemias of infancy as well as therapy-related leukemias. We utilized a conditional knockin strategy to bypass the embryonic lethality caused by MLL-CBP expression and to assess the immediate effects of induced MLL-CBP expression on hematopoiesis. Within days of activating MLL-CBP, the fusion protein selectively expanded granulocyte/ macrophage progenitors (GMP) and enhanced their self-renewal/proliferation. MLL-CBP altered the gene expression program of GMP, upregulating a subset of genes including Hox a9. Inhibition of Hox a9 expression by RNA interference demonstrated that MLL-CBP required Hox a9 for its enhanced cell expansion. Following exposure to sublethal γ-irradiation or N-ethyl-N-nitrosourea (ENU), MLL-CBP mice developed myelomonocytic hyperplasia and progressed to fatal myeloproliferative disorders. These represented the spectrum of therapy-induced acute myelomonocytic leukemia/chronic myelomonocytic leukemia/myelodysplastic/ myeloproliferative disorder similar to that seen in humans possessing the t(11;16). This model of MLL-CBP therapy-related myeloproliferative disease demonstrates the selectivity of this MLL fusion for GMP cells and its ability to initiate leukemogenesis in conjunction with cooperating mutations.
Original language | English |
---|---|
Pages (from-to) | 368-381 |
Number of pages | 14 |
Journal | EMBO Journal |
Volume | 24 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jan 26 2005 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Neuroscience(all)
- Molecular Biology
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)