Abstract
Functional electrode devices modified with cast films of metallofullerene La@C82-A solely and of metallofullerene-artificial lipids were constructed, and the aqueous electrochemistry of the electrodes was investigated. Tridodecylmethylammonium bromide (1), which forms a multimolecular bilayer membrane structure, was used as the artificial lipid. The electron-transfer reactions of the modified electrodes were examined by means of electrochemical techniques. Almost no electrochemistry was observed for the La@C82-A film-coated electrode. In sharp contrast with this result, a La@C82-A/1-coated electrode was found to exhibit well-defined cyclic voltammograms with major cathodic peak potentials at 0.28, -0.69, and -1.0 V (vs SCE), which would correspond to the first, second, and third reduction of La@C82-A, respectively. The observed cyclic voltammograms were stable for potential cycling. The first reduction process was found to be stable for the negative-end potential hold, while the second and third reduction processes were unstable. The higher stability of the first reduction state of La@C82-A would be due to the formation of a closed shell structure like La@C82-A anion in o-dichlobenzene. La@C82 embedded in the lipid film on the electrode was rather stable for dioxygen.
Original language | English |
---|---|
Pages (from-to) | 3523-3525 |
Number of pages | 3 |
Journal | Journal of Physical Chemistry B |
Volume | 106 |
Issue number | 14 |
DOIs | |
Publication status | Published - Apr 11 2002 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry