Construction of Heterotypic Cell Sheets by Magnetic Force-Based 3-D Coculture of HepG2 and NIH3T3 Cells

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

Heterotypic 3-D coculture is essential to mimic tissues and organs, because cell-cell interaction between various types of cells is believed to be important for the activation of cellular functions. In this study, magnetic force was applied to construct a 3-D coculture system of HepG2 and NIH3T3 cells as a model of hepatocytes and mesenchymal cells. Magnetite cationic liposomes (MCLs) were used to label target cells. NIH3T3 cells labeled with MCLs were seeded onto ultralow-attachment plates, whose surface is composed of a covalently bound hydrogel layer that is hydrophilic and neutrally charged. When a magnet was placed under the plate, cells accumulated on the bottom of the well. After a 24-h incubation period, the cells formed a multilayered cell sheet, which contained the major mesenchymal extracellular matrix (ECM) components (fibronectin and type I collagen), suggesting that the use of stromal NIH3T3 cells gave sufficient strength to cell sheets. Both NIH3T3 and HepG2 cells were labeled with MCLs, and cocultured by two methods: NIH3T3 cell sheets were constructed and HepG2 cells were subsequently seeded onto NIH3T3 cell sheets, and then allowed to form layered cell sheets by applying magnetic force; or NIH3T3 and HepG2 cells were mixed and then allowed to form mixed cell sheets by applying magnetic force. These heterotypic multilayered cell sheets were successfully constructed and an enhanced albumin secretion by HepG2 cells was observed. These results suggest that the new tissue engineering technique using magnetite nanoparticles and magnetic force, to which we refer to as magnetic force-based tissue engineering (Mag-TE), is a promising approach to construct multilayered cell sheets consisting of heterotypic cocultured cells.

Original languageEnglish
Pages (from-to)371-378
Number of pages8
JournalJournal of Bioscience and Bioengineering
Volume104
Issue number5
DOIs
Publication statusPublished - Nov 1 2007

Fingerprint

Ferrosoferric Oxide
Liposomes
Hep G2 Cells
Magnetite
Coculture Techniques
Tissue engineering
Magnetite Nanoparticles
Magnetite nanoparticles
Hydrogel
Collagen Type I
Fibronectins
Collagen
Hydrogels
Magnets
Labels
Albumins
Chemical activation
Tissue
Tissue Engineering

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering

Cite this

@article{8ba2796bfbab449d98047a5f72229f60,
title = "Construction of Heterotypic Cell Sheets by Magnetic Force-Based 3-D Coculture of HepG2 and NIH3T3 Cells",
abstract = "Heterotypic 3-D coculture is essential to mimic tissues and organs, because cell-cell interaction between various types of cells is believed to be important for the activation of cellular functions. In this study, magnetic force was applied to construct a 3-D coculture system of HepG2 and NIH3T3 cells as a model of hepatocytes and mesenchymal cells. Magnetite cationic liposomes (MCLs) were used to label target cells. NIH3T3 cells labeled with MCLs were seeded onto ultralow-attachment plates, whose surface is composed of a covalently bound hydrogel layer that is hydrophilic and neutrally charged. When a magnet was placed under the plate, cells accumulated on the bottom of the well. After a 24-h incubation period, the cells formed a multilayered cell sheet, which contained the major mesenchymal extracellular matrix (ECM) components (fibronectin and type I collagen), suggesting that the use of stromal NIH3T3 cells gave sufficient strength to cell sheets. Both NIH3T3 and HepG2 cells were labeled with MCLs, and cocultured by two methods: NIH3T3 cell sheets were constructed and HepG2 cells were subsequently seeded onto NIH3T3 cell sheets, and then allowed to form layered cell sheets by applying magnetic force; or NIH3T3 and HepG2 cells were mixed and then allowed to form mixed cell sheets by applying magnetic force. These heterotypic multilayered cell sheets were successfully constructed and an enhanced albumin secretion by HepG2 cells was observed. These results suggest that the new tissue engineering technique using magnetite nanoparticles and magnetic force, to which we refer to as magnetic force-based tissue engineering (Mag-TE), is a promising approach to construct multilayered cell sheets consisting of heterotypic cocultured cells.",
author = "Akira Ito and Hideaki Jitsunobu and Kawabe Yoshinori and Masamichi Kamihira",
year = "2007",
month = "11",
day = "1",
doi = "10.1263/jbb.104.371",
language = "English",
volume = "104",
pages = "371--378",
journal = "Journal of Bioscience and Bioengineering",
issn = "1389-1723",
publisher = "The Society for Biotechnology, Japan",
number = "5",

}

TY - JOUR

T1 - Construction of Heterotypic Cell Sheets by Magnetic Force-Based 3-D Coculture of HepG2 and NIH3T3 Cells

AU - Ito, Akira

AU - Jitsunobu, Hideaki

AU - Yoshinori, Kawabe

AU - Kamihira, Masamichi

PY - 2007/11/1

Y1 - 2007/11/1

N2 - Heterotypic 3-D coculture is essential to mimic tissues and organs, because cell-cell interaction between various types of cells is believed to be important for the activation of cellular functions. In this study, magnetic force was applied to construct a 3-D coculture system of HepG2 and NIH3T3 cells as a model of hepatocytes and mesenchymal cells. Magnetite cationic liposomes (MCLs) were used to label target cells. NIH3T3 cells labeled with MCLs were seeded onto ultralow-attachment plates, whose surface is composed of a covalently bound hydrogel layer that is hydrophilic and neutrally charged. When a magnet was placed under the plate, cells accumulated on the bottom of the well. After a 24-h incubation period, the cells formed a multilayered cell sheet, which contained the major mesenchymal extracellular matrix (ECM) components (fibronectin and type I collagen), suggesting that the use of stromal NIH3T3 cells gave sufficient strength to cell sheets. Both NIH3T3 and HepG2 cells were labeled with MCLs, and cocultured by two methods: NIH3T3 cell sheets were constructed and HepG2 cells were subsequently seeded onto NIH3T3 cell sheets, and then allowed to form layered cell sheets by applying magnetic force; or NIH3T3 and HepG2 cells were mixed and then allowed to form mixed cell sheets by applying magnetic force. These heterotypic multilayered cell sheets were successfully constructed and an enhanced albumin secretion by HepG2 cells was observed. These results suggest that the new tissue engineering technique using magnetite nanoparticles and magnetic force, to which we refer to as magnetic force-based tissue engineering (Mag-TE), is a promising approach to construct multilayered cell sheets consisting of heterotypic cocultured cells.

AB - Heterotypic 3-D coculture is essential to mimic tissues and organs, because cell-cell interaction between various types of cells is believed to be important for the activation of cellular functions. In this study, magnetic force was applied to construct a 3-D coculture system of HepG2 and NIH3T3 cells as a model of hepatocytes and mesenchymal cells. Magnetite cationic liposomes (MCLs) were used to label target cells. NIH3T3 cells labeled with MCLs were seeded onto ultralow-attachment plates, whose surface is composed of a covalently bound hydrogel layer that is hydrophilic and neutrally charged. When a magnet was placed under the plate, cells accumulated on the bottom of the well. After a 24-h incubation period, the cells formed a multilayered cell sheet, which contained the major mesenchymal extracellular matrix (ECM) components (fibronectin and type I collagen), suggesting that the use of stromal NIH3T3 cells gave sufficient strength to cell sheets. Both NIH3T3 and HepG2 cells were labeled with MCLs, and cocultured by two methods: NIH3T3 cell sheets were constructed and HepG2 cells were subsequently seeded onto NIH3T3 cell sheets, and then allowed to form layered cell sheets by applying magnetic force; or NIH3T3 and HepG2 cells were mixed and then allowed to form mixed cell sheets by applying magnetic force. These heterotypic multilayered cell sheets were successfully constructed and an enhanced albumin secretion by HepG2 cells was observed. These results suggest that the new tissue engineering technique using magnetite nanoparticles and magnetic force, to which we refer to as magnetic force-based tissue engineering (Mag-TE), is a promising approach to construct multilayered cell sheets consisting of heterotypic cocultured cells.

UR - http://www.scopus.com/inward/record.url?scp=37049012873&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=37049012873&partnerID=8YFLogxK

U2 - 10.1263/jbb.104.371

DO - 10.1263/jbb.104.371

M3 - Article

VL - 104

SP - 371

EP - 378

JO - Journal of Bioscience and Bioengineering

JF - Journal of Bioscience and Bioengineering

SN - 1389-1723

IS - 5

ER -