Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film

Masaru Tanaka, Kazutaka Nishikawa, Hisashi Okubo, Hirofumi Kamachi, Tomoaki Kawai, Michiaki Matsushita, Satoru Todo, Masatsugu Shimomura

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)

Abstract

Hepatocytes were cultured on a honeycomb-patterned polymer film (honeycomb film) formed by self-organization in order to investigate the influence of the honeycomb pattern on cell behavior. The changes in cell morphologies and actin filaments were observed by optical, fluorescence, and scanning electron microscopy. Hepatocytes were flattened, and the actin filaments appeared conspicuously in the spreading regions on a flat film. In contrast, the hepatocytes that were cultured on the honeycomb film were observed to form a spherical shape, and the actin filaments were localized inside the edge of the spheroid. The spheroids were observed within several hours after seeding on the honeycomb film; they were attached and the spheroid shape was maintained without any deformation. The spheroids expressed a higher level of liver specific function than the cell monolayers on the flat film. These results suggest that the honeycomb film is a suitable material for tissue engineering scaffolds and biomedical devices.

Original languageEnglish
Pages (from-to)464-469
Number of pages6
JournalColloids and Surfaces A: Physicochemical and Engineering Aspects
Volume284-285
DOIs
Publication statusPublished - Aug 15 2006
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Surfaces and Interfaces
  • Physical and Theoretical Chemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Control of hepatocyte adhesion and function on self-organized honeycomb-patterned polymer film'. Together they form a unique fingerprint.

Cite this