Control of magnetic domain wall displacement using spin current in small in-plane magnetic field in Permalloy nanowires

Yoshihiko Togawa, Takashi Kimura, Ken Harada, Akira Tonomura, Yoshichika Otani

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We microscopically investigate the magnetic domain wall motion induced by current pulse application in a small in-plane magnetic field in U-shaped Permalloy wires by means of Lorentz microscopy together with simultaneous transport measurement. An in-plane magnetic field less than 7 Oe parallel to the wire direction in U-shaped geometry effectively works to impede bidirectional motion of the domain wall induced by current pulse application, i.e. to suppress the stochastic nature of the domain wall displacement. The present finding will provide practical and reliable ways of controlling and manipulating the domain wall dynamics, which are widely applicable in spintronic devices, especially when stochastic nature causes serious problems in device operation. Reliable manipulation of the magnetic state is discussed using the current-driven domain wall motion and domain nucleation in the magnetic wire device.

Original languageEnglish
Article number064015
JournalJournal of Physics D: Applied Physics
Volume44
Issue number6
DOIs
Publication statusPublished - Feb 16 2011

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Acoustics and Ultrasonics
  • Surfaces, Coatings and Films

Fingerprint Dive into the research topics of 'Control of magnetic domain wall displacement using spin current in small in-plane magnetic field in Permalloy nanowires'. Together they form a unique fingerprint.

Cite this