Core electron-root confinement (CERC) in helical plasmas

M. Yokoyama, H. Maaberg, C. D. Beidler, V. Tribaldos, K. Ida, T. Estrada, F. Castejon, A. Fujisawa, T. Minami, T. Shimozuma, Y. Takeiri, A. Dinklage, S. Murakami, H. Yamada

Research output: Contribution to journalArticle

84 Citations (Scopus)

Abstract

The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r, in the core region are common features for this improved confinement. Such observations are consistent with a transition to the 'electron-root' solution of the ambipolarity condition for Er in the context of neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The thresholds for CERC establishment are found for the collisionality and electron cyclotron heating power. The magnetic configuration properties (e.g. effective ripple and magnetic islands/rational surfaces) play important roles for CERC establishment.

Original languageEnglish
Pages (from-to)1213-1219
Number of pages7
JournalNuclear Fusion
Volume47
Issue number9
DOIs
Publication statusPublished - Dec 1 2007

Fingerprint

electrons
electron cyclotron heating
magnetic islands
configurations
ripples
temperature profiles
electron energy
heat
thresholds
electric fields

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Condensed Matter Physics

Cite this

Yokoyama, M., Maaberg, H., Beidler, C. D., Tribaldos, V., Ida, K., Estrada, T., ... Yamada, H. (2007). Core electron-root confinement (CERC) in helical plasmas. Nuclear Fusion, 47(9), 1213-1219. https://doi.org/10.1088/0029-5515/47/9/018

Core electron-root confinement (CERC) in helical plasmas. / Yokoyama, M.; Maaberg, H.; Beidler, C. D.; Tribaldos, V.; Ida, K.; Estrada, T.; Castejon, F.; Fujisawa, A.; Minami, T.; Shimozuma, T.; Takeiri, Y.; Dinklage, A.; Murakami, S.; Yamada, H.

In: Nuclear Fusion, Vol. 47, No. 9, 01.12.2007, p. 1213-1219.

Research output: Contribution to journalArticle

Yokoyama, M, Maaberg, H, Beidler, CD, Tribaldos, V, Ida, K, Estrada, T, Castejon, F, Fujisawa, A, Minami, T, Shimozuma, T, Takeiri, Y, Dinklage, A, Murakami, S & Yamada, H 2007, 'Core electron-root confinement (CERC) in helical plasmas', Nuclear Fusion, vol. 47, no. 9, pp. 1213-1219. https://doi.org/10.1088/0029-5515/47/9/018
Yokoyama M, Maaberg H, Beidler CD, Tribaldos V, Ida K, Estrada T et al. Core electron-root confinement (CERC) in helical plasmas. Nuclear Fusion. 2007 Dec 1;47(9):1213-1219. https://doi.org/10.1088/0029-5515/47/9/018
Yokoyama, M. ; Maaberg, H. ; Beidler, C. D. ; Tribaldos, V. ; Ida, K. ; Estrada, T. ; Castejon, F. ; Fujisawa, A. ; Minami, T. ; Shimozuma, T. ; Takeiri, Y. ; Dinklage, A. ; Murakami, S. ; Yamada, H. / Core electron-root confinement (CERC) in helical plasmas. In: Nuclear Fusion. 2007 ; Vol. 47, No. 9. pp. 1213-1219.
@article{b14f581c360147f7ab428d8a6f121835,
title = "Core electron-root confinement (CERC) in helical plasmas",
abstract = "The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r, in the core region are common features for this improved confinement. Such observations are consistent with a transition to the 'electron-root' solution of the ambipolarity condition for Er in the context of neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The thresholds for CERC establishment are found for the collisionality and electron cyclotron heating power. The magnetic configuration properties (e.g. effective ripple and magnetic islands/rational surfaces) play important roles for CERC establishment.",
author = "M. Yokoyama and H. Maaberg and Beidler, {C. D.} and V. Tribaldos and K. Ida and T. Estrada and F. Castejon and A. Fujisawa and T. Minami and T. Shimozuma and Y. Takeiri and A. Dinklage and S. Murakami and H. Yamada",
year = "2007",
month = "12",
day = "1",
doi = "10.1088/0029-5515/47/9/018",
language = "English",
volume = "47",
pages = "1213--1219",
journal = "Nuclear Fusion",
issn = "0029-5515",
publisher = "IOP Publishing Ltd.",
number = "9",

}

TY - JOUR

T1 - Core electron-root confinement (CERC) in helical plasmas

AU - Yokoyama, M.

AU - Maaberg, H.

AU - Beidler, C. D.

AU - Tribaldos, V.

AU - Ida, K.

AU - Estrada, T.

AU - Castejon, F.

AU - Fujisawa, A.

AU - Minami, T.

AU - Shimozuma, T.

AU - Takeiri, Y.

AU - Dinklage, A.

AU - Murakami, S.

AU - Yamada, H.

PY - 2007/12/1

Y1 - 2007/12/1

N2 - The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r, in the core region are common features for this improved confinement. Such observations are consistent with a transition to the 'electron-root' solution of the ambipolarity condition for Er in the context of neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The thresholds for CERC establishment are found for the collisionality and electron cyclotron heating power. The magnetic configuration properties (e.g. effective ripple and magnetic islands/rational surfaces) play important roles for CERC establishment.

AB - The improvement of core electron heat confinement has been realized in a wide range of helical devices such as CHS, LHD, TJ-II and W7-AS. Strongly peaked electron temperature profiles and large positive radial electric field, E r, in the core region are common features for this improved confinement. Such observations are consistent with a transition to the 'electron-root' solution of the ambipolarity condition for Er in the context of neoclassical transport, which is unique to non-axisymmetric configurations. Based on this background, this improved confinement has been collectively dubbed 'core electron-root confinement' (CERC). The thresholds for CERC establishment are found for the collisionality and electron cyclotron heating power. The magnetic configuration properties (e.g. effective ripple and magnetic islands/rational surfaces) play important roles for CERC establishment.

UR - http://www.scopus.com/inward/record.url?scp=38849133700&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38849133700&partnerID=8YFLogxK

U2 - 10.1088/0029-5515/47/9/018

DO - 10.1088/0029-5515/47/9/018

M3 - Article

AN - SCOPUS:38849133700

VL - 47

SP - 1213

EP - 1219

JO - Nuclear Fusion

JF - Nuclear Fusion

SN - 0029-5515

IS - 9

ER -