CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells

Juntaro Negi, Osamu Matsuda, Takashi Nagasawa, Yasuhiro Oba, Hideyuki Takahashi, Maki Kawai-Yamada, Hirofumi Uchimiya, Mimi Hashimoto, Koh Iba

Research output: Contribution to journalArticle

355 Citations (Scopus)

Abstract

The continuing rise in atmospheric [CO2] is predicted to have diverse and dramatic effects on the productivity of agriculture, plant ecosystems and gas exchange. Stomatal pores in the epidermis provide gates for the exchange of CO2 and water between plants and the atmosphere, processes vital to plant life. Increased [CO2] has been shown to enhance anion channel activity proposed to mediate efflux of osmoregulatory anions (Cl- and malate2-) from guard cells during stomatal closure. However, the genes encoding anion efflux channels in plant plasma membranes remain unknown. Here we report the isolation of an Arabidopsis gene, SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1, At1g12480), which mediates CO 2 sensitivity in regulation of plant gas exchange. The SLAC1 protein is a distant homologue of bacterial and fungal C4-dicarboxylate transporters, and is localized specifically to the plasma membrane of guard cells. It belongs to a protein family that in Arabidopsis consists of four structurally related members that are common in their plasma membrane localization, but show distinct tissue-specific expression patterns. The loss-of-function mutation in SLAC1 was accompanied by an over-accumulation of the osmoregulatory anions in guard cell protoplasts. Guard-cell-specific expression of SLAC1 or its family members resulted in restoration of the wild-type stomatal responses, including CO 2 sensitivity, and also in the dissipation of the over-accumulated anions. These results suggest that SLAC1-family proteins have an evolutionarily conserved function that is required for the maintenance of organic/inorganic anion homeostasis on the cellular level.

Original languageEnglish
Pages (from-to)483-486
Number of pages4
JournalNature
Volume452
Issue number7186
DOIs
Publication statusPublished - Mar 27 2008

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'CO<sub>2</sub> regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells'. Together they form a unique fingerprint.

  • Cite this

    Negi, J., Matsuda, O., Nagasawa, T., Oba, Y., Takahashi, H., Kawai-Yamada, M., Uchimiya, H., Hashimoto, M., & Iba, K. (2008). CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature, 452(7186), 483-486. https://doi.org/10.1038/nature06720